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Abstract Background Fast simulation techniques are strongly favored in computer graphics,

especially for the nonlinear inhomogeneous elastic materials. The homogenization theory is a perfect

match to simulate inhomogeneous deformable objects with its coarse discretization, as it reveals how to

extract information at a fine scale and to perform efficient computation with much less DOF. The existing

homogenization method is not applicable for ubiquitous nonlinear materials with the limited input

deformation displacements. Methods In this paper, we have proposed a homogenization method for the

efficient simulation of nonlinear inhomogeneous elastic materials. Our approach allows for a faithful

approximation of fine, heterogeneous nonlinear materials with very coarse discretization. Modal analysis

provides the basis of a linear deformation space and modal derivatives extend the space to a nonlinear

regime; based on this, we exploited modal derivatives as the input characteristic deformations for

homogenization. We also present a simple elastic material model that is nonlinear and anisotropic to

represent the homogenized materials. The nonlinearity of material deformations can be represented

properly with this model. The material properties for the coarsened model were solved via a constrained

optimization that minimizes the weighted sum of the strain energy deviations for all input deformation

modes. An arbitrary number of bases can be used as inputs for homogenization, and greater weights are

placed on the more important low-frequency modes. Results Based on the experimental results, this

study illustrates that the homogenized material properties obtained from our method approximate the

original nonlinear material behavior much better than the existing homogenization method with linear

displacements, and saves orders of magnitude of computational time. Conclusions The proposed

homogenization method for nonlinear inhomogeneous elastic materials is capable of capturing the

nonlinear dynamics of the original dynamical system well.
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1 Introduction

Since Terzopoulos et al. 's seminal paper[1] on elastically deformable models, physical-based deformable

simulation has become popular in computer graphics, with tremendous developments being made. Despite

the progress that has occurred, most of the work has focused on objects made of a single, homogeneous

material. This is because simulation methods with this simplification are more applicable to interactive

applications. However, many real-world objects are composed of heterogeneous materials. Simulation of

such complex objects using the currently available techniques usually requires high-resolution spatial

discretization to resolve the fine-scale heterogeneity. This requirement leads to overwhelming

computational costs, thereby making interactive simulation impractical.

Our goal is to efficiently simulate inhomogeneous deformable objects with very coarse discretization,

while effectively capturing the physical behavior. Homogenization theory[2] is a perfect match for this

purpose, as it reveals exactly how to extract information at a fine scale to perform efficient computation.

However, the application of homogenization theory in computer graphics is surprisingly rare. To the best

of our knowledge, Kharevych et al. firstly introduce the homogenization method for graphics

applications[3]. From the exact matching of potential energies for a set of characteristic displacements, their

method achieves a coarse approximation of deformable objects that are composed of inhomogeneous linear

elastic materials. The coarsened material properties allow for real-time simulation that captures the correct

dynamic behavior of the original materials. Their method is limited to linear elasticity; therefore, it is not

applicable for ubiquitous nonlinear materials. In this paper, we address this problem and propose a novel

homogenization method for nonlinear inhomogeneous elastic materials.

We employed the same strategy as in the method of Kharevych et al., obtaining the coarsened material

properties by matching the potential energies for a set of characteristic displacements. The homogenization

of nonlinear materials imposes several key challenges compared to linear homogenization. First, the space

of nonlinear deformations is significantly larger than the space of infinitesimal linear deformations.

Therefore, a set of displacements that are characteristic of typical nonlinear deformations has to be found.

Second, a proper anisotropic nonlinear material model needs to be defined for the coarse representation so

that the homogenized material properties exhibit sufficient anisotropy and nonlinearity. Finally, the exact

matching of potential energies for the chosen displacements requires that the number of equations is equal

to the number of unknowns in the material properties to be solved. This requirement is overly restrictive

for nonlinear homogenization because nonlinear materials possess a larger family of characteristic

deformations, and it is good practice to account for as many of them as possible during homogenization.

To address each of these problems, the respective contributions are presented in this paper. We exploited

the idea of using deformation modes from modal analysis as the typical deformations for homogenization.

Although the modal basis has been explored extensively for reduced simulation in previous methods[4],

using the inherent properties of the modal basis for homogenization is new. Nonlinear deformations are

beyond the span of the linear modal basis. We constructed the deformation basis employing the modal

derivatives technique proposed by Barbič and James[5], and thus, nonlinear deformations are covered by the

basis.

Our second contribution to the field is a simple anisotropic nonlinear material model. Based on the

isotropic St. Venant-Kirchhoff model, which is commonly used in graphics, we defined its anisotropic

extension. This anisotropic material model was used in our coarse representation and expressed sufficient

nonlinearity for graphics simulations.

Furthermore, unlike the previous method that solves for the coarsened material properties with exact
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matching of the potential energies, we formulated the homogenization process as an optimization. The

weighted sum of the strain energy deviations for the input deformation modes was minimized. We also

considered the frequencies of the deformation modes and put greater weight on the more important low-

frequency modes. With this optimization strategy, an arbitrary number of bases can be used as input data,

and therefore, the restriction on the number of displacements can be overcome.

2 Related work

A complete review of the vast number of methods for the simulation of physical deformation is beyond the

scope of this paper, and we refer the reader to the excellent survey by Nealen et al. [6]. In this section, we

focus on previous research closest to ours on fast simulation techniques and the simulation of

inhomogeneous materials.

2.1 Fast deformable simulation

Fast simulation techniques are strongly favored in computer graphics because real-time and interactive

frame rates are crucial to applications such as video games and virtual surgery. Many strategies have been

devised for fast simulation. Running simulations with larger time intervals[7] is one strategy that seeks to

reduce the overall computation cost by using fewer simulation steps. Other methods[8-10] exploit the

simplicity of linear material models while circumventing the artifacts with large deformations by factoring

out rotation from the deformation before applying the material model and then rotating it back. These

methods are called stiffness warping methods or linear corotated methods.

Multi-resolution approaches are intuitive solutions that adaptively refine the simulation for more

intensive deformations and coarsen it otherwise. The homogenization method is one such method; it

utilizes a low-resolution mesh to animate the approximate motion of the high-resolution mesh. The

advantage of the homogenization method is that it improves the simulation efficiency by using a coarse

mesh instead of a fine mesh, which easily reduces the degrees of freedom (DOF) and dimensions entailed

in solving linear equations. Because objects typically interact through their surfaces, another way of

reducing the DOF in simulations is to express the physical equations at the surface points only[11-12].

However, such methods are generally limited to small deformations. In graphics, domain embedding[13-14] is

a widely used technique that achieves fast computation and detailed rendering by embedding high-

resolution visual meshes into a coarse deformable simulation.

Modal reduction methods limit the possible deformations in a low-dimensional subspace to achieve

efficiency. The reduced space is constructed using a set of deformation bases, typically obtained through

eigenvalue analysis of the stiffness matrix or of empirical simulation data. Among the two strategies,

methods using eigen-analysis of the stiffness matrix, or so-called modal analysis, are more prevalent.

Linear modal analysis provides the deformation basis only for small deformations from the configuration

at which the stiffness matrix is evaluated, and is therefore not suitable for the simulation of large

deformations. Several solutions have been proposed to resolve this problem. Choi and Ko exploited the

idea of stiffness warping for reduced simulation and developed a procedure to express and update the

rotation component of deformation in a subspace[15]. Barbič and James generalized linear modal analysis

and proposed an enhancement of the linear deformation modes with their directional derivatives[5]. These

so-called modal derivatives contain substantial nonlinear content that is sufficient to describe large

deformations in practice. The idea of modal reduction is extensively used by subsequent methods to reduce

computation complexity[16-19].
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Instead of using a modal basis for reduced simulation, in this study, we exploited the inherent properties

of modal bases as characteristic deformations and used them for homogenization. To our knowledge,

modal analysis has not been used for this purpose.

2.2 Inhomogeneous material simulation

Simulation of deformable objects that are composed of inhomogeneous materials is less explored in

computer graphics owing to the complexity of the material structure. Nesme et al. proposed approximating

non-uniform stiffness on cubic grids with the spatial average of the elasticity tensor[20]. However, such a

simple average does not accurately coarsen the original materials. In another work, Nesme et al. employed

a domain embedding technique and computed shape functions for coarse elements, considering the varying

materials in the elements based on high-resolution mechanical analysis in the pre-computation step[21]. They

also considered the void space inside the elements and preserved the branch structure with element

duplication. Unfortunately, their method only applies to linear elasticity. Bickel et al. presented a data-

driven approach to simulate nonlinear heterogeneous materials[22]. With a set of stress-strain relationships

captured from example deformations, they modeled the material by nonlinear interpolation of the

relationships at run-time. As the captured data are restricted to simple deformations with a single contact

probe, their method cannot accurately capture the material behavior in complex scenarios. Faure and

colleagues introduced material-aware shape functions that efficiently resolve non-uniform stiffness for

sparse meshless skinning[23]. These shape functions failed to ideally resolve complex three-dimensional

deformations because they only used one scalar stiffness value for computing the shape functions.

Kharevych et al. creatively adopted homogenization theory in computer graphics and properly

approximated heterogeneous materials on very coarse discretizations with orders of magnitude speedup[3].

Their method is based on linear elasticity and is therefore restricted to infinitesimal deformations of linear

materials. In this paper, we have addressed these limitations using a nonlinear homogenization method.

Chen et al. proposed building a material model database to avoid the repeated calculation of material

parameters in the simulation process[24]. The proposed method only queries the coarse resolution material

information in the database corresponding to the high-resolution mesh. This method can simulate more

complex nonlinear materials, but it ignores the relationship between the elements. At the same time, the

material model depends on the training set and parameter selection process. In their subsequent research,

they proposed a material solution scheme that considered the inconsistency of motion frequency and

boundary processing problems in the simulation process of different resolutions, which achieved good

simulation results[25]. Chen et al. proposed the use of the matrix shape function to replace the traditional

scalar shape function to simulate the nonlinear constitutive model of heterogeneous materials[26]. In the pre-

computation process, the balance of the geometric continuity and local material rigidity information is

considered. In contrast with Chen et al. 's previous method[25], the advantages of this method entail the

deformation characteristics of heterogeneous materials without adjusting parameters. In the following year,

they used a wavelet transform to propose a shape function that supported local features and improved the

boundary problems[27]. However, they use a linear corotated model, and there is still a certain expansion

space for the simulation of the nonlinear constitutive model. In this study, we aimed to build a nonlinear

and anisotropic material model by exploiting modal derivatives as the nonlinear input displacement to

generate a more diverse deformation space.

3 Rationale and overview

In this section, we present a brief overview of our homogenization algorithm. For consistency and clarity,
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we use SOLID characters to refer to quantities on the fine discretizations and HOLLOW characters to

refer to their coarse counterparts.

We employed FEM discretization for simulations; therefore, our method started from a fine mesh D with

varying material properties and obtained an approximation of the material properties on a coarse mesh D
whose element count is much smaller. Following Kharevych et al. 's approach[3], we computed the coarse

material parameters by matching the potential energies between two scales for a set of characteristic

deformations. Instead of enforcing exact matching, we tolerated some deviation in the energies. We defer

the explanation of the benefits to the section that follows, and merely describe the methodology here. For

any element TP on the coarse mesh, several elements, Tq, on the fine mesh occupy the same space. Hence,

the potential energy of the coarse element TP should approximately match the sum of the potential energies

over the fine elements Tq for all deformations.

W (TP ) ≈ W (Tq )
Computing the coarse potential energy W (TP ) requires a proper constitutive model defined on the coarse

mesh. As inhomogeneous materials generally lead to anisotropic behavior, the material model must be

anisotropic. To represent homogenized nonlinear materials, the material model also needs to be nonlinear.

We defined a simple material model in this study to achieve these aims.

Kharevych et al. used material deformations subjected to linear tractions on the boundary as the input

displacements. In contrast, we employed a nonlinear modal basis to enforce the energy matching. As

typical nonlinear deformations were taken into account by our homogenization process, we wished to

obtain graceful approximations for general nonlinear deformations. Given a displacement field u on the

fine mesh, we could easily downsample it via interpolation and obtain the displacement field U on the

coarse mesh. For boundary nodes of the coarse mesh that lie outside of the fine mesh domain, we found the

closest fine element to it and used extrapolation. The potential energies for meshes with different

resolutions were evaluated using u and U, respectively.

To find the elements from a fine mesh for each corresponding coarse mesh, we needed to detect the

intersection tetrahedral elements. To build up the energy equivalence of these two meshes with different

resolutions, we had to know the intersection volume of each fine element and the coarse tetrahedral mesh.

We simply chose the Monte Carlo approximation to solve the intersection volume of each tetrahedral

element. We sampled M points in the coarse element and determined the corresponding number of fine

elements. Then, the intersection volume of each fine element in the coarse element is V fine = NM ⋅ Vcoarse,
where V denotes the volume of the tetrahedral element. Although the simplification incurs some time

overhead, our material solving process is a pre-computation process, and the efficiency is acceptable.

4 Nonlinear homogenization

The strength of our method is achieved by combining three contributions: the use of nonlinear deformation

modes, an anisotropic nonlinear material model, and an optimization-based homogenization strategy. We

now present detailed descriptions of our work.

4.1 Nonlinear deformation modes

Kharevych et al. 's approach and ours share the same basic idea of enforcing potential energy matching

between two scales for a set of characteristic deformations, expecting that the coarsened material matches

the original heterogeneous one for all possible deformations. It is important to find a set of deformations
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that are typical enough to represent all deformations, that is, they form the basis of a deformation space.

Deformation basis generation is a difficult open problem, especially for deformations under general

forcing. Kharevych et al. used a set of so-called harmonic displacements as typical deformations for

homogenization. These displacements were computed by solving a set of static boundary value problems

with linear surface tractions prescribed as Neumann boundary conditions.

Inspired by recent methods that used modal analysis to construct a reduced deformation space, we

exploited the fact that modal basis represents typical deformations from the frequency perspective. The

standard linear modal basis can only express small deformations, and we employed the solution provided

by Barbič and James[5], which constructed a set of nonlinear deformation modes by including directional

derivatives of linear modals. Their paper provides a detailed description of the procedures to compute

modal derivatives and to generate the low-dimensional deformation basis with mass-PCA. Our

contribution lies in a new application of modal analysis for homogenization. We took the homogeneous bar

model as an example to demonstrate the difference of the displacement (Figure 1). Harmonic

displacements merely consist of linear stretch and shear (top); therefore, they encode no information on

nonlinear deformations, whereas our nonlinear deformation modes (bottom) contain substantial

nonlinearity.

As the homogeneous bar model shows in Figure 1, the top row demonstrates the harmonic

displacements of Kharevych et al. 's approach, which merely consists of linear stretch and shear, and the

bottom row adopts nonlinear deformation modes by using modal basis, which contains substantial

nonlinearity.

4.2 Anisotropic nonlinear material model

As mentioned earlier, the material model for the coarse mesh needs to be anisotropic and nonlinear in order

to express complex behaviors due to heterogeneity and nonlinearity. However, the wide variety of material

models in the literature, such as the popular Neo-Hookean and Mooney-Rivlin models, are mostly

isotropic. Here, we have defined an anisotropic and nonlinear material model based on the simple yet

Figure 1 Comparison of the displacements by Kharevych et al.’s approach[3] (top row) and our method (bottom

row) with a bar model, which we use in the experiments. Our nonlinear displacements with the modal basis and its

derivatives produce much greater deformations than the harmonic displacements with linear stretch and shear

deformations.
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widely used St. Venant-Kirchhoff model.

The St. Venant-Kirchhoff material, or StVK in short, is perhaps the simplest type of material model. It

extends the isotropic linear elasticity model σ = λ( trϵ) I + 2μϵ with geometric nonlinearity, replacing the

Cauchy strain ϵ with the Green strain E. Its material behavior can be expressed by the relationship between

E and the second Piola-Kirchhoff stress S as S = λ( trE ) I + 2μE. The stress-strain relationship is linear, but

the nonlinear strain tensor injects sufficient nonlinearity between displacements and stress for applications

in computer graphics.

Our anisotropic material model exploited the simplicity of the StVK model with regard to geometric

nonlinearity, and added anisotropy by relating the stress and strain with a rank-4 elasticity tensor C instead

of two scalars:

S = C :E,

where : denotes the double contraction of tensors. This material model can also be regarded as an extension

of the linear model used by Kharevych et al., but with geometric nonlinearity. The density of the potential

energy is computed as Ψ = S :E. As a result, our homogenization algorithm also solved for the elasticity

tensor CTp on the elements Tp of the coarse mesh. The inclusion of geometric nonlinearity in the

homogenization process worked well, which we have demonstrated with a comparison of simulations

between two scales under large deformations.

4.3 Optimization-based homogenization

Enforcing the exact equivalence of strain energies between each coarse element and its corresponding fine

elements was unnecessary because the error introduced by discretization was inevitable. The best we could

expect was to minimize the deviation between the two scales. In addition, exact equivalence requires that

the number of equations equals the number of unknowns in the material properties to be solved. In the case

of solving for a symmetric elasticity tensor C, the number of input displacements must be six. Six

displacements might be sufficient to describe typical linear deformations, but it is not for large

deformations because of the significantly larger deformation space.

Consequently, we formulated homogenization as an optimization problem with respect to the elasticity

tensor C. We further explored the importance of different deformation modes and put greater weight on

low-frequency modes. The objective to be minimized for each coarse element Tp was the weighted sum of

the potential energy deviations over all input deformations. The weight for each deformation mode was

determined using the same strategy as Barbič and James[5] to select the basis during mass-PCA.

Considering the physical property of the elasticity tensor, C is represented as an invertible symmetric 6 × 6
matrix with non-negative entries. As a result, the optimization with constraints for the coarse element Tp is

minCTp
∑
i = 1

r 1
2 ωi (W(U i ) - ∑

Tq ∈ D
Tq ∩ Tp ≠ 0

|Tq ∩ Tp|
|Tp| W(u i ))2

s.t.
CTp (k, l ) ≥ 0, 1 ≤ k, l ≤ 6
CTp = CT

Tp
det (CTp ) ≠ 0

where r is the number of input deformation modes, and ui and U i are the i-th deformation mode on the fine

mesh and the coarse mesh, respectively. The | ⋅ | operator computes the volume of the underlying region.

The i-th deformation mode is either a linear mode or a modal derivative, and the weight ωi is determined as

follows:

162162



Jing ZHAO et al: A homogenization method for nonlinear inhomogeneous elastic materials

ωi =
ì

í

î

ï
ï
ï
ï

λ1
λj
, if u i = Ψj

λ21
λjλk

, if u i = Φjk

where λ is the eigenvalue corresponding to the linear deformation modes, and Ψ and Φ stand for the linear

modes and modal derivatives.

We used the solver provided by NLopt[28] to solve this optimization, and different coarse elements could

be solved in parallel to save computation time.

4.4 Implementation details

Multiple-resolution mesh generation. In our homogenization algorithm, we generated a low-resolution

simulation model from the high-resolution model. We prepared meshes with two resolutions as input data.

For structured models, we generated boundary aligned meshes manually or utilized the software MeshLab

to simplify the fine surface mesh and generate a coarse mesh by remeshing to maintain its quality for the

numerical computing in the simulation process. Then, we generated the tetrahedral meshes of the two

meshes. For complex models, it is difficult to maintain key structures of the model using the mesh

simplification operation and remeshing method.

Figure 2 shows an example of our homogenization procedure setup using a plant as a model. The

stiffness distribution of the plant model is visualized using a color map (left), and our homogenization

algorithm obtained material properties on a very coarse mesh from material properties on a highly detailed

mesh. A plant is divided into three basic parts: the root is the hardest with Young's Modulus 5.0e6, the

leaves are the softest part with Young's Modulus 1.0e6, and the Young's Modulus of the stem is 5.0e5.

For the model with complex structures, we utilized the voxelization method[5] to obtain the volumetric

mesh of the simulation meshes with two resolutions. However, with this method, the two meshes have a

boundary-conforming problem. To solve the inconsistency of the boundaries, we proposed a simple

solution. We generated the surface mesh of the voxelization low-resolution mesh, and computed the signed

distance to the high-resolution mesh. Then, the vertex of the low-resolution mesh was moved to the high-

resolution mesh in the opposite direction to the gradient of the distance field. After the adjustment process,

the meshes with these two resolutions achieved higher boundary consistency, which could be satisfied with

our algorithm. Finally, we generated meshes with two resolutions, as depicted in Figure 2 (high resolution:

middle, low resolution: right). In addition to our simple method, Stuart et al. proposed another higher

tightly volumetric mesh from a high-resolution surface mesh[29].

Figure 2 Plant material colormap and the generation of the two resolution meshes. The stiffness distribution of the

plant model is visualized using a color map (left); our homogenization algorithm obtained material properties on a

very coarse mesh (right) from material properties on a highly detailed mesh (middle).
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FEM simulation. To validate our algorithm, we used the Vega FEM library[30] to run simulations at

different resolutions. As the high-resolution mesh was sufficiently dense, we assumed that the material

model for each fine mesh element was isotropic. The global behavior was still anisotropic because the

parameters of the elements were different. We employed the StVK model for each fine element in the high-

resolution simulations of nonlinear materials, while our anisotropic material model was used in the

corresponding coarse simulations. For comparison with Kharevych et al. 's method, we ran simulations of

linear materials using corotated methods with isotropic materials at high resolutions and anisotropic

materials at coarse resolutions. The backward Euler integration method with a uniform time step of Δt =
0.001s was used for all simulations.

Rendering. We embedded surface meshes with high-quality details in the simulation meshes for

rendering purposes. The surface meshes were deformed during the simulation via interpolation of the

simulation mesh positions. The deformed surface meshes were rendered offline to generate the figures

presented in this paper.

5 Results

We have demonstrated the power of our method

with several carefully designed examples. High-

resolution material models are nonlinear and the

objects typically undergo large deformations. By

comparing with the results of Kharevych et al. 's

method, we have shown that the homogenized

material properties obtained from our method

approximate the original nonlinear material

behavior much better than Kharevych et al.'s linear

approach. The Poisson ratio is 0.3 for all examples.

In Figure 3, we fixed the top end of an

inhomogeneous elastic bar with layered materials

and lifted its bottom end horizontally. The bar

swings with large stretches and bending after the

lifted end is released. A side-by-side comparison of

high-resolution and low-resolution simulations

indicates that our homogenized material is more

faithful to the original heterogeneous material. An

inhomogeneous layered bar fixed at the top swings

under gravity. The regions in blue (Young's

Modulus: 2.0e6) are stiffer than those in yellow

(Young's Modulus:5.0e5).

Figure 4 is another example of inhomogeneous deformable objects undergoing nonlinear deformations.

The elastic bar made of nine layers deforms with coupled twisting and stretching. The Young's Modulus of

the stiffer part is 5.0e5 (blue) and that of the softer part is 1.0e5 (yellow). The homogenized model of

Kharevych et al.'s method fails to resolve such nonlinearity, and the coarse simulation exhibits a significant

difference from the fine simulation. In contrast, coarse simulation using our results is consistent with the

high-resolution simulation.

Figure 3 Bar swing simulation comparison. Coarse

simulation using our homogenized material properties

(row 2) matches the high-resolution nonlinear simulation

(row 1) very well, while coarse simulation with the results

obtained from Kharevych et al.'s method (row 4) deviates

noticeably from the fine-scale corotated simulation (row 3).
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Figure 5 shows a T-shaped structure with Young's Modulus 3.5e6, where the vertical direction is fixed,

and the fiber structure with higher stiffness (Young's Modulus: 5.0e7) is embedded in different directions

in the horizontal direction. The complicated T-shaped model deforms under gravity. Because of the

different embedding fibers, the two horizontal branches show different material properties. We compared

our method with that of Kharevych et al., and the different simulation frames are shown in Figure 5.

Figures 6 to 8 demonstrate the comparison between our method and Kharevych et al.'s method based on

the quantitative analysis of bar swing, bar twist, and T-shape examples. A vertex with large deformation

was selected on the surface mesh of the object, and the displacement curve of the point in the vertical

direction was drawn with different resolutions and the material properties obtained by different methods.

The deviation between the variation curves corresponding to the high- and low-resolution simulations

reflects the error between the results of the homogenization algorithm and the reference value. As can be

seen from the figure, the deviation between the curves corresponding to our method is much smaller than

that corresponding to Kharevych's method.

Figure 4 Bar twist simulation comparison. Side-by-side comparison of high-resolution simulation (left) and coarse

simulation (right). The top row is the result of our method, while the bottom row is from Kharevych et al.’s method.

Better consistency between different resolutions is achieved with our method due to more accurate homogenization.

Figure 5 T-shape structure simulation comparison. StVK material model and high-resolution mesh (row 1), our

heterogeneous material and low-resolution mesh (row 2), linear corotated model and high-resolution mesh (row 3),

linear corotated model and Kharevych et al.’s method (row 4).
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Table 1 lists the timing information for the presented examples. The computations were performed on a

PC with a quad-core Intel Core i5, 2.8 GHz CPU. Homogenization was conducted in parallel using four

Figure 6 Curves corresponding to the bar swing example describing the vertical displacement of a vertex on the

surface grid with time. Our results (left) show that the two curves achieve a better coincidence degree than those of

Kharevych et al’s results (right).

Figure 7 Curve corresponding to the bar twist example describing the vertical displacement of a vertex on the

surface grid with time. Our results (left) show that the two curves achieve a better coincidence degree than those of

Kharevych et al’s results (right).

Figure 8 Curves corresponding to the T-shape example describing the vertical displacement of a vertex on the

surface grid with time. Our results (left) show that the two curves achieve a better coincidence degree than those of

Kharevych et al’s results (right).
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CPU cores, while the simulations ran sequentially on a single core. As can be seen from the table, with

homogenization as a pre-computation process, we achieved orders of magnitude speedup in the simulation.

All the coarse simulations presented in this paper ran at real-time frame rates.

The columns indicate the number of elements on the fine mesh and coarse mesh, the time for

homogenization (in minutes), the simulation time per time step (in milliseconds) for high-resolution

simulation, coarse simulation, and the speedup ratio of the coarse simulation to high-resolution simulation,

respectively.

6 Conclusions

We have presented a homogenization method that can obtain the effective material properties of nonlinear

inhomogeneous materials on very coarse discretizations. Coarse simulations with our homogenized

materials captured the original material behavior with acceptable accuracy and saved orders of magnitudes

of computation time.

In theory, the coarse mesh and the fine mesh yield a relationship between geometry representation and

deformation energy; thus, the proposed method is valid for both microstructural and structural models.

However, during the experimental process, we found that the algorithm employed in this study still has

some limitations. For the model with a complex shape and structure, when the deformation was complex,

the deformation effect of our homogenization algorithm on the low-resolution mesh could reflect the

stiffness distribution of the material. Although the trend of motion was consistent with that obtained using

a high resolution, there were still obvious differences with the high-resolution case in terms of frame

comparison. As depicted in Figure 9, a plant swings with an initial deformation. The figure shows obvious

differences between the simulation effect of the low-resolution mesh obtained with our homogenization

algorithm (row 2) and that of the high-resolution mesh (row 1). The stiffness of the plant simulation object

is shown in Figure 2 (left-1). After analysis, it was found that the displacement deviation may be due to the

Table 1 Summary of the results

Example

bar swing

bar twist

T

Ef

13056

13056

44413

Ec

702

702

584

th(min)

19.0

21.0

49.9

tf(ms)

221.9

215.1

846.3

tc(ms)

9.2

10.5

8.1

Speedup

24.1x

20.5x

104.5x

Figure 9 Comparison of simulation effects of heterogeneous objects under two resolutions. The results obtained with

our proposed method (row 2) have similar movement trends compared to those of the high-resolution mesh (row 1),

but there are also some differences.
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inherent error caused by finite element simulation and the discrete solutions of meshes with different

resolutions. Therefore, to verify this possibility, we used the same homogeneous material in the high- and

low-resolution meshes of the plant model, as shown in Figure 10. The top row shows the high-resolution

simulation, while the bottom row shows the low-resolution simulation. Owing to the mismatching of

geometric boundaries and the errors introduced by discretization, even if the two resolution meshes have

the same parameters, the simulation results still have differences. In order to eliminate the differences in

deformation frequency caused by different discrete meshes, the authors of [25] proposed a practical

method.

Our goal was to enhance the simulation efficiency by using a coarse mesh with inhomogeneous

materials instead of the original mesh with a high resolution. Our experimental results demonstrated that

our method has attained this goal while maintaining a deformable behavior similar to that of the high-

resolution model to some extent. Therefore, we created a coarse mesh with a lower resolution for each

experiment instead of testing the resolution limitation of the coarse mesh to generate simulation effects

similar to those of the original high-resolution mesh.

In our method, we considered the corresponding factors such as the displacement, volume, and meshes

in the precomputing process. For the elastic tensor calculation process, we mainly considered the energy

equivalence relationship between each coarse element and its corresponding fine elements. It is possible to

consider the local stress fields corresponding to the relationship between the two resolution meshes or the

displacements of the corresponding vertices as a constrained condition in our future work.

It would also be interesting to explore the fast simulation of inhomogeneous materials undergoing

topology changes using homogenization techniques. The material properties of the corresponding elements

need to be recomputed at run-time in case of topology changes. Our optimization-based homogenization

strategy is efficient, whereas much work remains to be done in order to re-homogenize local elements on

the fly without jeopardizing the simulation.
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