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Peridynamics-Based Fracture Animation for Elastoplastic
Solids

W. Chen, F. Zhu, J. Zhao, S. Li, G. Wang

Figure 1: A sphere shoots through walls made of different materials, causing varied fracture behaviors. From left to right:
isotropic brittle fracture, anisotropic brittle fracture, isotropic ductile fracture, anisotropic ductile fracture.

Abstract
In this paper, we exploit the use of peridynamics theory for graphical animation of material deformation
and fracture. We present a new meshless framework for elastoplastic constitutive modeling that contrasts
with previous approaches in graphics. Our peridynamics-based elastoplasticity model represents deformation
behaviors of materials with high realism. We validate the model by varying the material properties and performing
comparisons with FEM simulations. The integral-based nature of peridynamics makes it trivial to model material
discontinuities, which outweighs differential-based methods in both accuracy and ease of implementation. We
propose a simple strategy to model fracture in the setting of peridynamics discretization. We demonstrate that the
fracture criterion combined with our elastoplasticity model could realistically produce ductile fracture as well as
brittle fracture. Our work is the first application of peridynamics in graphics that could create a wide range of
material phenomena including elasticity, plasticity, and fracture. The complete framework provides an attractive
alternative to existing methods for producing modern visual effects.

Keywords: peridynamics, fracture, elastoplasticity

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

The simulation of deformable materials has been an impor-
tant research topic in computer graphics for decades, since
the early work by Terzopoulos and colleagues [TPBF87].
One of the strongest driving forces behind the active research
is the persistently growing need for higher realism from the
visual effects industry. Materials in the real world exhibit

complex behaviors, such as coupled elastoplastic defor-
mations, fracture, etc. The complicated material behaviors
are difficult to replicate by any single method despite the
numerous ones that have been developed thus far. Existing
approaches generally excel at some phenomena but would
stumble (if not fail) at others. For instance, mesh-based
methods [MG04, ITF04, TSIF05, SB12] are a good choice

submitted to COMPUTER GRAPHICS Forum (5/2017).



2 W. Chen et al. / Peridynamics-Based Fracture Animation for Elastoplastic Solids

to simulate elastic deformations whereas not preferred for
phenomena that involve topological changes. Particle-based
methods [MCG03, PKA∗05, SSC∗13] are considered suit-
able for modeling topological changes, however the inherent
loss of connectivity information would cause undesirable
numerical fracture [LZLW11, ZZL∗16] while simulating
large deformations.

We build on recent developments of peridynamics theory
in the computational physics community [Sil00, SEW∗07,
Mit11, ELP13, MO14] and propose a novel framework for
graphical animation of varied deformation behaviors and
fracture. Our aim is to enrich available options of simula-
tion techniques for easier and better animation production.
Peridynamics was first adopted to animation applications
by Levine et al. [LBC∗14] where they described a simple
spring-mass system to handle brittle fracture of solids. In
contrast, we handle elastoplasticiy, brittle fracture, and duc-
tile fracture in a single framework. To this end, we propose
several novel contributions in this work. We first present
an elastoplastic constitutive model in the peridynamics-
based framework with simple extension to anisotropy, and
the model is validated against results produced by FEM.
Furthermore, we show that both brittle and ductile fracture
phenomena can be naturally represented with nearly no
effort by integrating a simple fracture criterion into this
material model. This is due to the integral-based formulation
of peridynamics, in which forces at a material point are com-
puted by gathering contributions from all material points in
its interaction range through integration. On the other hand,
methods based on classical continuum mechanics formulate
force computations with partial differential equations that
fail to be applicable directly on singularities such as a crack.
This feature makes our peridynamics-based framework more
attractive over existing approaches for producing anima-
tions that involve fracture. Lastly, our method is simple to
implement and trivially parallelizable, providing a useful
alternative to previous methods for animation production.

2. Related Work

A large body of literature has been devoted to physical simu-
lation of natural phenomena as a result of active research. A
complete literature review is beyond the scope of this paper.
In the following we comment only on the representative
works most related to ours.

Elastoplasticity Animation The modeling of deformable
plasticity in graphics dates back to the pioneering work by
Terzopoulos and Fleischer [TF88]. O’Brien and colleagues
[OBH02] incorporated a similar additive plasticity model
into a finite element simulation to animate ductile fracture.
The strain measure was decomposed into two components,
where one is due to elastic deformation and the other due
to plastic deformation. Müller et al. [MKN∗04] applied
this model in their point-based framework and simulated
plastic behaviors of objects. Irving et al. [ITF04] presented a

multiplicative formulation of plasticity and pointed out that
their model was better handling finite plastic deformation
than the additive one. In contrast to the additive model,
they decomposed the deformation gradient into two com-
ponents through multiplication. The multiplicative model
was extensively used by later works to animate phenomena
that involve plasticity. Bargteil et al. simulated large vis-
coplastic flow [BWHT07], Gerszewski and his colleagues
animated elastoplastic solids [GBB09], and Stomakhin et
al. modeled plasticity of snow [SSC∗13], just to name a
few. Unfortunately, neither of the above plasticity models
applies in the peridynamics framework because there is no
concept of strain nor deformation gradient in the integral-
based formulation. As a result, we present a new constitutive
model for peridynamics in this work to animate elastoplastic
solids.

Fracture Animation Numerous methods have been pro-
posed on fracture animation [MBP14,WWD15] because the
stunning phenomenon of fracture and failure is an indispens-
able visual element in animated movies and video games.
Early approaches use simple schemes to model fracture,
such as the finite difference method [TF88], the mass-
spring system [NTB∗91], and the mass-point constraint
system [SWB01]. O’Brien and colleagues [OH99] adopt-
ed techniques from continuum mechanics and presented a
FEM-based method to simulate brittle fracture of solids.
They later extended their method to ductile fracture by
incorporating a plasticity model [OBH02]. Müller et al.
[MMDJ01] employed a quasi-static finite element analysis
to animate brittle fracture of stiff materials undergoing colli-
sions. Parker et al. [PO09] presented some useful techniques
for real-time simulation of fracture in game environment.
One major issue in FEM-based methods is the genera-
tion of fracture patterns on meshes, which could alter the
underlying mesh topology. Early methods typically made
use of simple separation along mesh element boundaries
[NTB∗91, MMA99, SWB01, MMDJ01] or even element
deletion [FDA02]. Mesh subdivision prior to splitting could
somewhat increase the available geometric details [MK00,
BG00], whereas this tended to introduce elements with poor
aspect ratios. Allowing failure along more arbitrary paths
could generate more geometrically rich fracture patterns
[NF99,OH99,OBH02], albeit at the expense of complicated
re-meshing. Molino et al. [MBF04] proposed a virtual node
algorithm to avoid the complexity of re-meshing, where
elements were duplicated into partially filled counterparts
with virtual nodes. The virtual node algorithm was fre-
quently used by subsequent works on fracture animation
[BHTF07] and mesh cutting [SDF07, WJST14] due to its
simplicity compared to re-meshing methods. Kaufmann et
al. [KMB∗09] adapted the extended finite element method
(XFEM) that enriches approximation by custom-designed
basis functions, instead of actual/virtual element cutting.
Other representative mesh-based methods resorted to modal
analysis [GMD13] and pure geometric mesh decompositions
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[MCK13,SO14] for real-time brittle fracture. Most recently,
several works explored the boundary element method for
rigid body fracture [ZBG15, HW15] where only surface
meshes were employed for both representation and compu-
tation.

In contrast to mesh-based approaches, meshless methods
are generally considered as a better solution for animating
topological changes. Based on the moving least square
(MLS) meshless framework by Müller et al. [MKN∗04],
Pauly and colleagues [PKA∗05] developed a novel mesh-
less method for fracture animation of elastoplastic solids.
Their method generates detailed crack surfaces and al-
lows arbitrary crack initiation/propagation. Steinemann et al.
[SOG09] employed surface mesh representation in meshless
framework and presented a novel surface tracking technique
to efficiently split the meshless deforming objects. Inspired
by the rigid body assumption for simulating brittle fracture,
Liu et al. [LHLW11] employed quasi-static analysis in a
meshless local Petrov-Galerkin framework. Stomakhin et al.
modeled the fracture of snow using a meshless material point
method [SSC∗13]. Hegemann et al. [HJST13] combined a
level set based mesh embedding technique with the material
point method to animate dynamic ductile fracture.

Peridynamics The peridynamics theory was first proposed
by Silling [Sil00] as a nonlocal reformulation of classical
solid mechanics. It contrasts with classical (local) theory in
that the state of a material point is influenced by not neces-
sarily the material points located in its immediate vicinity,
but also those over long distances. The governing equations
of the peridynamics theory are spatial integral equations
instead of partial differential equations. The theory was fur-
ther developed by subsequent works [SEW∗07,ELP13], and
its applications to the engineering field such as multi-scale
material modeling [ABL∗08, SC14] and fracture modeling
[AXS06, SWAB10, SA14] were studied. A comprehensive
review of the research literature in the computational physics
community is beyond our scope, we refer the readers to
the book by Madenci and Oterkus [MO14]. Levine et al.
[LBC∗14] first introduced peridynamics to graphics for
fracture animation. Their method was limited to brittle
fracture of isotropic elastic materials with a single Poisson
ratio of 0.25. Our work, on the other hand, is a complete
framework that models elastoplasticity and anisotropy under
various parameter settings, representing brittle and ductile
fracture with high realism.

3. Background

In the peridynamics theory, any material point x interacts
with other material points within a distance δ. The distance
δ is called the horizon of x, and the material points within
the horizon are referred as its family, Hx. There are infinite
number of family members for a material point before
discretizing the continuum into discrete particles. Figure 2
is an illustration of the peridynamics discretization with par-

Figure 2: Illustration of peridynamics discretization. A
continuum is represented as particles (pink dots), and any
particle (green dot) interacts with the particles within its
horizon (green circle).

ticles. It seems analogous to other meshless methods based
on classical theory [MCG03, MKN∗04], and the difference
lies in the scale of interaction radius δ. In the case of the
classical (local) continuum model, the state of a particle
is influenced by only particles in its immediate vicinity.
For case of the peridynamics theory, however, the state
of a particle is influenced by particles within a region of
finite radius. The peridynamics theory is thus referred as a
nonlocal theory. As the radius becomes infinitely large, the
peridynamics theory becomes the continuous version of the
molecular dynamics model. As the radius becomes smaller,
it becomes the continuum mechanics model. Therefore, the
peridynamics model establishes a connection between the
continuum mechanics and molecular dynamics models.

Our motivation for choosing peridynamics is that it is
more favorable to handle material discontinuities, such as
cracks. This benefit inherently from an integral force formu-
lation of its governing equations, which stands in contrast
to the partial differential equations used in the classical
formulations. As we know, spatial derivatives are not well
defined at discontinuities. Therefore, special treatment is
generally required for fracture modeling in existing methods
that are based on classical continuum mechanics. For in-
stance, the mesh-based methods [OH99, OBH02] employed
re-meshing operations and the meshless method by Pauly
et al. [PKA∗05] altered the particle weight functions. The
peridynamics governing equations remain valid at discon-
tinuities, and material damage is represented as part of the
peridynamics constitutive model. These attributes permit
fracture initiation and propagation to be modeled with ar-
bitrary paths in the peridynamics framework.

In peridynamics, the governing equation at any point x is
formulated in integral form as below:

ρü(x) =
∫

Hx

[T〈x′,x〉−T〈x,x′〉]dH +b(x), (1)

where ρ is the mass density, u denotes the displacement, b
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is the external loads due to gravity and impact forces, and
x′ is one material point that belongs to the family Hx of
x. T〈x′,x〉 and T〈x,x′〉 are two essential terms in which
the constitutive laws of materials are encoded. T〈x′,x〉
represents the internal force density exerted by x′ on x, and
T〈x,x′〉 is the other way around. The two terms both appear
in the governing equation to enforce the Newton’s third
law, and similar strategy was employed in SPH methods
[MCG03]. The angle brackets representation 〈·〉 was defined
by Silling et al. [SEW∗07] as a function inside the family
Hx, which they called as a state. Please note the integral
form of the equation, which is the key difference between
peridynamics and classical theory. The entire framework is
built on displacements u instead of their spatial derivatives,
thereby making discontinuity modeling trivial. With particle
discretization, the integration within Hx is represented as
summation over family particles:

ρü(x) = ∑
x′∈Hx

[T〈x′,x〉−T〈x,x′〉]Vx′ +b(x), (2)

with Vx′ as the volume of particle x′.

4. Elastoplastic Model

In this section we describe our constitutive model for peri-
dynamics in detail. We start with the basic isotropic elastic
model, then plasticity is incorporated, and finally we extend
the model with anisotropy.

4.1. Isotropic Elasticity

As is discussed in Section 3, the key to peridynamics-
based constitutive modeling is the design of proper internal
force density T〈·〉. Silling et al. [SEW∗07] showed that
peridynamic constitutive models can be designed to match
many hyperelastic constitutive models under the classical
elasticity theory. We derive our model based on the model
described by Madenci and Oterkus [MO14], which matches
the isotropic linear elasticity model in classical theory. The
elastic internal force density exerted by particle j on particle
i is defined as below:

Ti〈x j,xi〉=
1
2

A
y j−yi

|y j−yi|
, (3)

where x and y denote the positions of particles before and
after deformation respectively. The direction of the force
density is along the deformed bond between the particles
given by y j−yi

|y j−yi| . A is a scalar that represents the force
magnitude, and it is composed of two terms by addition
A = Adil + Adev, namely the dilatation term Adil and the
deviatoric term Adev.

The dilatation term Adil is due to the dilatation part
of deformation, i.e., volume change without any shape
distortion. It is defined as:

Adil = 4ωi ja
y j−yi

|y j−yi|
·

x j−xi

|x j−xi|
θi, (4)

Figure 3: An armadillo is initially anchored on its back
and four limbs, and it deforms elastically when its back is
released.

where a is a peridynamics material parameter and ωi j is
the weight function between particle i and particle j. For
isotropic materials ωi j is monotonically decreasing with
respect to the distance between particles:

ωi j =
δ

|x j−xi|
. (5)

Note that ωi j is defined in the material space, therefore
can be precomputed. The term θi measures the dilatation at
particle i, which is defined with respect to the stretch of all
bonds between particle i and its family:

θi =
9

4πδ4

N

∑
k=1

ωiksik
yk−yi

|yk−yi|
· (xk−xi)Vk, (6)

where N represents the number of family points k for point i,
and Vk are their volumes. The stretch sik of the bond between
particles is defined as:

sik =
|yk−yi|
|xk−xi|

−1. (7)

The deviatoric term Adev is a result of distortion that does
not cause change in volume. It is defined with respect to the
deviatoric component of bond extension:

Adev = 4ωi jb(ei j−
δ

4
y j−yi

|y j−yi|
·

x j−xi

|x j−xi|
θi), (8)

where b is a material parameter. We denote ei j = |y j−yi|−
|x j − xi| as the extension of the bond between particle i
and particle j. The term in brackets of Equation 8 is the
deviatoric component of bond extension ed

i j:

ed
i j = ei j−

δ

4
y j−yi

|y j−yi|
·

x j−xi

|x j−xi|
θi. (9)

Intuitively, ed
i j is constructed by removing the dilatation

component of bond extension from the total bond extension
ei j.

In summary, the behavior of our isotropic elastic model
is controlled by two material parameters a and b. The
model is equivalent to the isotropic linear elasticity model in
classical theory, please refer to the supplementary document
for elaborated derivation. Here we directly provide the
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Figure 4: Comparison of elastic and plastic deformations by
shooting a sphere at two walls made of different materials
with identical initial configuration as in (a). The elastic wall
deforms on impact (b), and recovers afterwards (c). The
plastic wall undergos permanent deformation (e) after the
impact (d).

conversion between the material parameters in this model
and those from continuum mechanics:

a =
9κ

8πδ4 b =
15µ
2πδ5 , (10)

where κ and µ denote the bulk modulus and the shear mod-
ulus respectively. In Figure 3 we demonstrate an example of
the hyperelastic deformations animated with our model.

4.2. Plasticity

Plasticity model for peridynamics is less studied in liter-
ature due to its complexity. To our knowledge, Silling et
al. [SEW∗07] proposed the first plasticity model that is
analogous to the von Mises flow model in classical theory.
Mitchell presented a new framework for peridynamics-based
plasticity modeling [Mit11] based on Silling et al.’s model,
whereas the model hasn’t been verified by experiments thus
far. We adopt Mitchell’s model for practical applications,
and propose novel modifications based on their work.

Our plasticity model is based on purely deviatoric plas-
tic flow theory, therefore we start by decomposing the
deviatoric bond extension ed

i j (see Equation 9) into two
components by addition:

ed
i j = ee

i j + ep
i j, (11)

where ee
i j and ep

i j are the elastic and plastic part of the
total deviatoric bond extension respectively. To incorporate
plasticity into the constitutive model, the deviatoric part of
internal force density (see Equation 8) is now redefined as
below:

Adev = 4ωi jb(e
d
i j− ep

i j), (12)

with the contribution of plastic deviatoric bond extension

Figure 5: Simulation of ductile fracture with different
amount of maximum plasticity. From left to right the
parameter γ

|x j−xi| is 0.1,0.15, and 0.2.

removed from force computation. In case of elastic defor-
mations, the term ep

i j vanishes and Equation 12 conforms to
Equation 8.

A simple yield function f (Adev) is used to determine
whether deformation has entered the plasticity regime:

f (Adev) =
(Adev)

2

2
−Ψ0, (13)

where Ψ0 is a critical parameter. The deformation is elastic
if f (Adev)≤ 0, and plasticity is present if f (Adev)> 0.

In case of plastic deformations, we project Adev onto the
yield surface to obtain a critical value of deviatoric force
density Ac

dev:

Ac
dev =

√
2Ψ0sign(Adev), (14)

where sign(·) is the sign function. Ac
dev is used to compute

the increment of plastic deviatoric bond extension:

4ep
n =

1
2b

(Adev−Ac
dev) (15)

ep
n+1 = (ep

n +4ep
n)min

(
1,

γ

|ep
n +4ep

n |
)
. (16)

The subscripts n and n + 1 denote the discretized point
of time at which the bond extensions and corresponding
increments are evaluated. The parameter γ which does not
appear in the original model of Mitchell’s [Mit11] is used
to enforce a limit on the amount of plasticity. We found in
experiments that with this parameter we obtain more control
over the plastic behaviors (see Figure 5) and the stability of
simulation is improved as well. Figure 4 shows a comparison
of the simulation results using our elastoplastic constitutive
model. Our elastic model produces correct elastic behaviors,
and permanent deformation is captured when plasticity is
involved.

4.3. Anisotropy

Our constitutive model is isotropic up to now, and we extend
it to anisotropy in this section. We model anisotropy by
manipulating the weight functions between particles (see
Equation 5) with direction information. The key idea is to
associate an anisotropy matrix G with each particle, so that
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Figure 6: Comparison of crack patterns generated by
isotropic (left) and anisotropic (right) brittle fracture. The
color represents the damage of particles, with blue as no
damage and red as complete damage.

applying the transformation to the bond between particles
biases the influence weight toward preferred directions. The
weight function ωi j for anisotropic materials is computed as
below:

ωi j =
δ

|G(x j−xi)|
. (17)

Appealing anisotropic effects could be generated with our
anisotropy model. See Figure 1 for a demonstration of
the model applied to brittle and ductile fracture animation.
Figure 6 compares the crack patterns generated by the brittle
fracture examples in Figure 1.

5. Fracture

In this section we present our fracture model and introduce
the mesh embedding strategy we employ to generate crack
surfaces.

5.1. Fracture Criterion

Material damage can be modeled in peridynamics by per-
manently eliminating the bonds between particles. The dy-
namics with discontinuities is trivial due to the integral-
based nature of peridynamics. For elastic brittle materials,
a simple critical stretch is generally used as the fracture
criterion. This criterion conforms to the physically plausible
energy release rate, and it has been validated before [SA05].
Levine et al. [LBC∗14] also utilized this criterion for brittle
fracture modeling in computer graphics. In order to account
for plasticity and model ductile fracture, we redefined the
elastic critical stretch criterion as:

se
i j =

ei j− ep
i j

|xi−x j|
. (18)

Unfortunately, we found in experiments that this fracture
criterion would cause unrealistic artifacts since bonds with
smaller rest lengths are sometimes more prone to breaking.

Figure 7: Glass wall fracture with different α values.

We alleviate this problem by incorporating the weight func-
tion ωi j into the criterion to increase the fracture criterion
of closer family members. Shattering effects could arise
for brittle materials, which lead to many tiny fragments.
We could avoid the generation of too small fragments by
continuously increasing the crack threshold as the material
gets damaged. The final fracture criterion that we employ in
our model is formulated as below:

sω
i j = (1+αφ)

se
i j

ωi j
= (1+αφ)

ei j− ep
i j

δ
, (19)

where φ = 1− ni
Ni

measures the damage level of material
point i. ni and Ni are the numbers of active bonds connecting
i with its family members in the deformed and initial
configurations, respectively. ni gradually decreases as more
bonds around i are broken, increasing the damage level of
i. The parameter α is set to 0 by default, and could be used
to mitigate the shattering effect while non-zero values are
given. Figure 7 provides an example of controlling the dust
with different α values. It shows that our criterion is able to
produce compelling results in practical use.

5.2. Embedded Mesh

While particle-based discretization offers great simplicity,
this simplicity does come at a cost that it is difficult to
generate surface representation. This naturally motivates the
use of mesh embedding approach, in which the boundary
of volumetric meshes could represent the original objec-
t surface and the newly generated crack surfaces during
simulation. We use tetrahedron meshes to represent object
geometry, and the particles are initialized at the barycenters
of each mesh element. The particle family members are
initialized according to the mesh connectivity and a pre-
specified horizon δ. To accommodate the topology changes
resulted from fracture, we propose a simple strategy that
dynamically split the embedded mesh along the elements.

We achieve this by maintaining a crack face set and
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Figure 8: Shooting a bullet through a jello, producing
complex crack surfaces.

continuously adding the shared triangles to it for fracture
happened between immediate elements. At each time step,
we investigate merely those vertices that involved in crack
face set and determine whether its connected tetrahedra have
been separated by crack faces. If this is the case, we split the
vertex, assign corresponding tetrahedra to each of them, and
make a topological change on the embedded mesh. After
splitting, we could safely remove only those crack faces
that directly results in our vertex splitting. If the connected
tetrahedra are separated into more than two groups, we
accordingly split vertex into multiple copies. Simultaneous
splitting of multiple vertices at one crack face are also
compatible in our method. Figure 8 shows an example of
using our strategy to produce complex crack surfaces.

After handling mesh topology, we update the vertex
positions using the velocities of corresponding particles. A
simple weighted-average approach is employed to update
the vertex positions:

ωv = ∑
p

1
4

mp (20)

vv =
1

ωv
∑
p

1
4

mpvp (21)

xt+1
v = xt

v +∆tvv (22)

Figure 9: Simulation of stretching beams with different
Poisson ratios.

where subscripts p and v represent the particle and the mesh
vertex respectively. mp and vp are the mass and velocity of
the particle, vv and xv are the velocity and position of the
mesh vertex.

6. Results

We present the results produced with our method in this
section. All our examples are run on a 3.5GHz, Intel Core
i7-5930K CPU with 32G RAM. The embedded tetrahedron
meshes are generated using the open-source TetGen soft-
ware [Si15]. All the figures in the paper are rendered off-line
using the open-source POV-Ray software (http://www.
povray.org/). We use explicit time integration for ease
of implementation. We also performed a naive parallelized
implementation of our method using OpenMP.

Constitutive model validation. We validate our constitu-
tive model by simulating deformations with varied material
properties and performing comparisons with the results
of FEM. Figure 3 shows an example of isotropic elastic
deformations, where the back and four limbs of an armadillo
are initially anchored and then the anchor on the back is
removed. The deformations are plausible and no undesirable
numerical fracture occurs when the arms of the armadillo
are over-stretched. In Figure 4 we compare the results of
elasticity and plasticity, and our model produces correct
deformation behaviors. Figure 5 demonstrates the varied
effects produced by tunning the amount of maximum plastic-
ity. Figure 9 compares the elastic deformations of stretching
beams with different Poisson ratio values. Unlike Levine et
al.’s model [LBC∗14], our constitutive model is not limited
to a single Poisson ratio. Finally, we conduct comparisons
with FEM through Figure 10 to Figure 13. The deformations
of a bending beam in Figure 10 produced with our method
are almost identical to those generated by FEM, under
both stiff and soft material settings. We further demonstrate
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Figure 10: Simulation of bending beams with different
stiffness (top:soft;bottom:stiff) using our method and FEM.
The results of our method are indistinguishable from the
results produced by FEM.

Figure 11: Simulation of a swinging bar using linear FEM
(left), corotated linear FEM (middle left), and our method
(middle right). Our method is accurate as the corotated linear
FEM (right).

the accuracy of our method in constitutive modeling using
comparisons with quantitative error analysis. The swing
(see Figure 11) and twist (see Figure 12) deformations of
the bar produced by our method are as accurate as those
by corotated linear FEM with position deviations less than
10%. The position deviations are measured over the diagonal

of the object’s bounding box: Error =
|xp−xre f

p |
d where d

is the length of the diagonal. Note that our constitutive
model alleviates artifacts of the classical linear model albeit
derived from it. It is because peridynamics does not employ
the geometric linear approximation as the Cauchy strain
in continuum mechanics does. Thus peridynamics does not
suffer from ghost forces while undergoing rigid rotations.
We also obtain nice accuracy for the noncyclic vibrations of
the armadillo presented in Figure 13. Therefore, we believe
our peridynamics-based constitutive model is plausible for
graphical animations.

Figure 12: Simulation of a twisting bar using linear FEM
(left), corotated linear FEM (middle left), and our method
(middle right). Our method is accurate as the corotated linear
FEM (right).

Figure 13: Simulation of noncyclic vibrations for an
armadillo using FEM (left) and our method (middle). The
accuracy of our method is acceptable compared with FEM
(right).

Fracture animation. Our method could simulate brittle and
ductile fracture with compelling visual realism. In Figure 1
a wide range of fracture behaviors are generated, including
isotropic brittle fracture, anisotropic brittle fracture, isotrop-
ic ductile fracture, and anisotropic ductile fracture. This
demonstrates the capability of our method in simulating
fracture. We believe our approach is the first peridynamics-
based framework in graphics with such flexibility. Figure 8
shows an example of shooting a bullet into a jello-like object.
Our method handles well the generation of the complex
crack surfaces. The armadillo in Figure 14 is stretched
until its limbs tear off. The behavior of ductile fracture is
correctly demonstrated, including the progressive generation
of multiple cracks (see Figure 18). The glass wall in Fig-
ure 15 is pressed by a heavy metal ball. Cracks develop and
propagate without shattering the glass into fragments. This
phenomenon cannot be reproduced by the level set approach
[HJST13] as mentioned in their paper, and it is challenging
for the remeshing-based FEM methods [OH99, OBH02]
considering the mesh operations. In contrast, our method
handles the complicated propagation process well, including
the branching and merging of cracks. The approach by
Pauly et al. [PKA∗05] could produce results comparable to
ours, employing explicit handling of the topology events.
Our method, however, requires none. In Figure 16 a bunny
made of elastic material falls to the ground and shatters.
Our method is able to realistically capture the secondary
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Examples particle num δ bond num κ µ ρ Ψ0
γ

|x j−xi| sw
(k)( j) ∆t λa λl performance

(KPa) (KPa) (Kg/m3) (s) (s/step)
Glass Wall[Figure 1(a)(b), Figure 7, 15] 3.0×105 1.45λ 5.0×107 3.3×107 2.0×107 2200 ∞ 0.0 0.0005 1.0×10−6 0 0 ∼ 2.4
Plastic Wall [Figure 1(c)(d)] 3.0×105 1.45λ 5.0×107 3.3×103 2.0×103 2200 1025 0.2 0.05 1.0×10−4 0.002 0 ∼ 2.4
Armadillo [Figure 3] 4.2×105 1.50λ 7.5×107 6.3×104 3.8×104 1000 ∞ 0.0 ∞ 1.0×10−4 0.002 0.001 ∼ 5.3
Elastic Wall [Figure 4(b)(c)] 3.0×105 1.45λ 5.0×107 1.0×104 6.0×103 1200 ∞ 0.0 ∞ 5.0×10−5 0 0 ∼ 2.4
Plastic Wall [Figure 4(d)(e)] 3.0×105 1.45λ 5.0×107 1.0×104 6.0×103 1200 1026 0.2 ∞ 5.0×10−5 0.0005 0 ∼ 2.4
Wall [Figure 5] 3.0×105 1.45λ 5.0×107 1.0×104 6.0×103 1200 1026 (0.1,0.15,0.2) ∞ 5.0×10−5 0.0005 0 ∼ 2.4
Jello [Figure 8] 4.6×105 1.45λ 8.6×107 1.0×103 4.6×102 1000 ∞ 0.0 0.4 5.0×10−5 0 0 ∼ 3.8
Beam Stretch [Figure 9] 2.2×104 1.0 λ 1.3×106 2.0×103 (9.2,1.5,2.2)×102 1000 ∞ 0.0 ∞ 1.0×10−5 0 0 ∼ 0.2
Soft Beam Bend [Figure 10] 4.5×104 1.0 λ 6.9×106 6.3×103 3.8×103 1000 ∞ 0.0 ∞ 5.0×10−5 0 0 ∼ 0.6
Stiff Beam Bend [Figure 10] 4.5×104 1.0 λ 6.9×106 3.3×104 2.0×104 1000 ∞ 0.0 ∞ 2.5×10−5 0 0 ∼ 0.6
Bar Swing [Figure 11] 9.2×103 1.11 λ 1.5×105 5.0×103 5.0×103 1000 ∞ 0.0 ∞ 1.0×10−4 0 0 ∼ 0.05
Bar Twist [Figure 12] 9.2×103 1.34 λ 1.5×105 1.0×103 6.0×102 1000 ∞ 0.0 ∞ 1.0×10−4 0 0 ∼ 0.06
Armadillo Vibrate [Figure 13] 2.0×104 1.38 λ 1.8×106 5.0×103 3.0×103 1000 ∞ 0.0 ∞ 5.0×10−4 0 0 ∼ 0.2
Armadillo [Figure 14] 4.2×105 1.50λ 7.5×107 6.3×104 3.8×104 1000 ∞ 0.0 0.61 1.0×10−4 0 0.001 ∼ 5.3
Bunny [Figure 16] 5.2×105 1.45λ 8.8×107 2.5×102 1.2×102 1000 ∞ 0.0 0.13 5.0×10−4 0 0 ∼ 5.2
Thin Sheet [Figure 17] 1.6×105 1.45λ 2.0×107 5.0×103 3.0×103 1000 ∞ 0.0 0.1 5.0×10−5 0 0.001 ∼ 1.8

Table 1: Model information, simulation parameters, and performance data for all our examples. λ is the average edge length of
the embedded tetrahedron mesh used for particle initiation.

Figure 14: An armadillo is stretched until its limbs tear off.

fracture of the fragments. Figure 17 is another demonstration
of our method in handling crack tips. A thin sheet with initial
cracks is torn on two sides. The cracks gradually proceed and
finally shatter the sheet. Please note the filaments generated
as a result of crack branching and merging.

Choice of δ. We use a δ value of 1.0λ for most of the
FEM comparisons, where λ is the average edge length of
the embedded tetrahedron mesh. As peridynamics converges
to classical continuum mechanics while δ approaches zero
[WA05], this specific choice of δ amounts to the nodal force
computation of FEM using the 1-ring neighbors. Although
not always necessary, fine-tuning the δ value is a viable
way of getting well-synchronized results. For instance, in
Figure 13, we adjust it to 1.38λ to achieve our best result.
We studied the effect of different δ values with experiments,
and the results reveal that simulation plausibility is not very
sensitive to the parameter δ. In practice, we recommend a
value in the range between 1.0λ and 2.0λ. Larger values
could result in inadequate family members for particles close
to object boundary, causing the material to behave softer
than it should be. In this case, a correction for boundary
particles needs to be taken into account. Please refer to the
accompanied video for the comparison of different δ values.

In Table 1 we list the detailed parameter settings and
the performance data for all the examples presented in the

paper. The results in this paper are produced with practical
computation time. Note that we employ damping forces in
a few of the examples, mainly to ease the burden of self-
collision handling, which is not the major concern of this
work. The experimented damping models include a simple
air damping vnew = (1−λa)vold, and a Laplacian smoothing
vnew = vold + λlL(vold). Please refer to Table 1 for the
specific values of the damping coefficients λa and λl in
each example. Although effective in practice, these damping
forces are not a necessity for our method since the issue
of self-penetration could be (and should be) addressed by
superior detection and resolution strategies.

7. Discussions

We have introduced a novel meshless framework for graph-
ical modeling and animation of elastoplastic solids. Our
work is the first peridynamics-based framework in computer
graphics that can simulate a wide range of material behav-
iors, including elasticity, plasticity, and fracture.

Our work is not without limitations. Currently we can
not afford large time steps because we used explicit time
integration in our implementation. In the future, we plan to
incorporate implicit time integration into our framework to
achieve less restricted time step size. Another limitation of
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Figure 15: A glass wall on ground is pressed by a heavy metal ball and cracks without separating. Our method can model the
complicated crack propagation process, including branching and merging.

Figure 16: An elastic bunny falls to the ground and shatters into pieces. Note the secondary fracture of the fragments.

our work stems from the mesh embedding strategy for crack
surface representation. The level of crack detail is highly
dependent on the embedded mesh resolution. In addition,
we generate crack surfaces by separating the mesh elements,
which could cause the zig-zag artifact (see Figure 18).
This artifact might be alleviated by smoothing the crack
surfaces somewhat, or employing the virtual node algorithm.
While we used multi-threading in our implementation, the
performance of our method could be further improved with
GPGPU techniques.

Other interesting avenues for future work include com-
bining peridynamics theory with existing methods from
classical theory such as FEM and SPH. These methods com-
plement each other, and their combination could produce a
new method that is more powerful for animation production.
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