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Abstract
In this paper, we present a new real-time
simulation framework for example-based elastic
materials with different topology structures
between the object and input examples. The
geometry descriptions in the Euclidean space
of all input shapes are projected into a common
reduced shape space spanned by the Laplace-
Beltrami eigenfunctions constructed on the
volumetric mesh. The reduced shape interpola-
tion space is scale and topology independent.
The shape interpolation process is computed
totally in the reduced subspace by solving a
nonlinear energy optimization problem which is
calculated in the model reduction subspace us-
ing cubature elements. To accelerate the energy
solving process, we eliminate the transmission
process between the reduced spaces and the Eu-
clidean space by establishing a direct projection
from Laplace-Beltrami shape space to the model
reduction subspace. Experiments demonstrate
that our method can achieve real-time efficiency
while providing comparable simulation quality.
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1 Introduction

The simulation of deformable objects is a com-
mon task in physically-based animation field be-
cause of its broadly used in computer graphics
and virtual reality systems. The material prop-
erties tuning of the deformable behavior is a
challenging and tedious work, while achieving
art-directed deformation results becomes anoth-
er intuitive choice.

Recently, Martin et al. [1] propose an
approach of example-based elastic materials
achieving artistic control. They construct an
example space by interpolating example poses
provided by users and generate an additional
force which attracts the object towards the ex-
ample space. It contains a time-consuming pro-
cess to reconstruct a consistent geometric rep-
resentation of interpolated example poses. Ad-
ditionally, the input examples share the same
topology with the simulation object. Zhu et
al. [2] express shapes in a common shape s-
pace in which the basis are the coupled Laplace-
Beltrami eigenfunctions. In the proposed shape
space, different models can be animated us-
ing the same examples. Compared to Mar-



tin’s method, the efficiency has been improved
by using the reduced shape interpolation space.
The whole simulation process is far from real-
time efficiency since they obtain the interpola-
tion shape by solving a constrained nonlinear-
optimization problem. The energy computing is
on the whole Euclidean space which is related to
the vertices number of the object’s surface mesh
even though the process only contains several it-
eration steps. We achieve example-based elastic
deformation at real-time rate, and at the same
time we keep the different topology structures
for both the examples and the simulation objec-
t using the Laplace-Beltrami shape space. For
the details, in the simulation process, we take
use of the nonlinear modal basis and the cuba-
ture elements to compute internal force for ar-
bitrary materials presented by An et al.[3]. In
the shape interpolation process, we obtain the
target interpolation configuration to solve a con-
strained nonlinear optimization problem totally
in the subspace. We solve the energy minimiza-
tion issue in the subspace by proposing a direct
projection from the Laplace-Beltrami shape s-
pace to the model reduction subspace.

2 Related Work

Example-Based Deformation Martin and his
colleges [1] propose an example-based elastic
material with the finite element method(FEM),
which allows the deformation behavior to be im-
plicitly controlled by specifying a set of exam-
ple poses. They employ a nonlinear Green s-
train as the deformation measure and construc-
t an elastic energy that pulls current configura-
tion towards the preferred configuration defined
by examples. It involves solving an expensive
nonlinear optimization problem to reconstruc-
t a consistent geometric representation of inter-
polated example poses. In their following re-
searches [4], they utilize an incompatible repre-
sentation for input and interpolate poses to inter-
polate between elements individually. The pro-
posed method achieves significant performance
improvements compared to previous work. Ex-
cept for example-based elastic solid deformation
materials, Fröhlich et al. [5] extend the deforma-
tion to discrete shells based on an extension of
the discrete shell energy and Jones et al. [6] pro-

pose the example-based plastic deformation for
rigid bodies based on linear blend skinning and
an unmodified rigid body simulator. Koyama et
al. [7] present a real-time example-based elas-
tic deformation method using the shape match-
ing framework and the linear interpolation of the
example poses. Their method is based on a ge-
ometry framework and achieves real-time effi-
ciency, while the simulation effect is not so good
as Martin’s method. The method proposed by
Zhang et al. [8] also obtains a real-time simu-
lation rate using a subspace integration. They
formulate a new potential using example-based
Green strain tensor which attracts the simulation
model to the example-based deformation feature
space. Wampler [9] introduces a novel approach
for example-based inverse kinematic mesh ma-
nipulation which generates high quality defor-
mations for a wide range of inputs. And the ap-
proach is fast enough to run in real time.

The limitation of the previous example-based
approaches is circumvented that all examples
must have identical topology with the simu-
lated object. Zhu et al. [2] propose a new
method which allows all the examples are ar-
bitrary in size, similar but not identity in shape
with the object. They project all the geometry
structures to a common shape space spanned by
the Laplace-Beltrami eigenfunctions and inter-
polate the examples via a weighted-energy min-
imization to find the target configuration which
guides the object to a desired deformation. The
target configuration is solved by a nonlinear
optimization problem and the nonlinear shape
interpolation process is time-consuming since
the nonlinear deformation energy between two
shapes is defined on the surface mesh, which
means the computation efficiency is relative to
the resolution of the mesh.
Subspace Simulation A lot of researches have
been proposed to improve the speed of sim-
ulating deformable models, especially for the
subspace simulation approach which has gained
popularity in computer graphics recently [10].
The modal analysis method was first proposed
in graphics to build linear vibration modes as the
subspace basis [11]. To handle rotational defor-
mations, Choi and Ko develope the modal warp-
ing method by removing incorrect vertex defor-
mation components caused by linear elasticity
[12]. Barbič et al. [13] construct nonlinear de-



formation modes from modal derivatives for the
St.Venant-Kirchhoff materials, since the internal
force of the special material can be simply rep-
resented as a vector of cubic polynomials in the
reduced coordinates. An et al. [3] calculate the
reduced elastic force in the subspace by using
cubature approximation elements. Their method
is not limited to the StVK material and reduces
the computational complexity of subspace sim-
ulation to O(r3), in which r is the number of
modes in the subspace basis. A basis augmenta-
tion scheme is presented to capture local defor-
mation caused by collision contact [14].
Shape Interpolation Shape interpolation is an
important issue in geometry processing. Most of
the shape interpolation schemes are based on the
interpolation for the selected geometric quanti-
ties of a shape. The interpolation process is to
compute the average quantities for all examples.
The reconstruction process of the shape is typ-
ically done as a least-squares problem depend-
ing on the quantities of the vertices positions are
linear or nonlinear interpolation. One effective
research is depended on maintaining the rigid
criteria called as-rigid-as-possible [15]. Their
method computes preferred interpolations by lo-
cal affine transformations of the local geomet-
rical elements. Xu et al. [16] propose a non-
linear gradient field interpolation method. The
geometric quantities conclude the vertex coor-
dinates and surface orientation, and the recon-
struction is a Poisson problem. Winkler et al.
[17] utilize the edge lengths and dihedral angles
of triangles of a surface mesh and Martin et al.
[1] take use of the strain tensors of the tetrahe-
dral mesh as the geometric interpolation quan-
tities. Due to the nonlinear optimization prob-
lem in the reconstruction process, the methods
run at real-time rates only for very coarse mesh-
es. Von-Tycowicz et al. [18] restrict the shape
optimization problem to a low-dimensional sub-
space that is specifically designed for the shape
interpolation problem.

3 Background

In this session, we present an overview of the
basic example-based elastic material simulation
framework and the reduced subspace simulation
method.

3.1 Example-Based Elastic Deformation

The key idea for the simulation of the example-
based elastic materials is to add an additional
elastic potential on the basic simulator of elas-
tic solids, which attracts the deformable object
towards the desirable deformation characterized
by the examples. The equations of motion of an
object discretize in space are given by

Mẍ+Dẋ+ f int +
∂Wp

∂x
= fext (1)

Here M is the mass matrix, x and ẍ are the
positions and accelerations of the object’s n-
odal degrees of freedom (DOFs), f int represents
the internal force, Wp = W (Xtarget, x) repre-
sents the additional potential between the objec-
t’s deformed configuration x and its closest tar-
get configuration Xtarget on the example man-
ifold spanned by input examples, fext denotes
the sum of external forces due to gravity, fric-
tion and contacts.

3.2 Subspace Simulation

Model reduction is an efficient technique wide-
ly used to speed up the integration. The basic
subspace simulation is to convert the displace-
ment vector u ∈ R3n into a subspace spanned
by a set of r(r ≪ 3n) representative deforma-
tion modes. These displacement vectors can be
assembled into a 3n × r matrix U , as the ba-
sis for subspace simulation. As the method de-
scribed in [13], we use nonlinear modal basis
to construct U , in which U is mass orthogonal:
UTMU = I , I is the r × r identity matrix.
Then the full-space displacement u is convert-
ed to u = Uq, in which q ∈ Rr represents the
reduced coordinates in the subspace. By com-
bining u = Uq and UTMU = I with Equation
1, we obtain the governing equation in the sub-
space:

q̈+UTDUq̇+UT f int(Uq)+UT ∂Wp

∂x
= UT fext

(2)
By using implicit integration, Equation 2 can be
formulated into a dense r× r linear system, and
the entire simulation can be orders of magnitude
faster than the full-space simulation.



4 Example-Based Subspace
Simulation

4.1 Real-time simulation framework

The previous example-based material simula-
tion method has the same limitation that the in-
put examples are constrained to share the same
topology with the object. [2] proposed the
Laplace-Beltrami eigen-analysis method to con-
struct a scale and topology independent shape
space. Our method proceeds also in two stages
as: the pre-computation stage and the run-time
simulation stage. Here we outline the proce-
dures in each stage:
Pre-computation:

(1) Construct the non-inertial frame of the
simulation model and align examples to the lo-
cal frame;

(2) Compute m leading eigenfunctions and
the corresponding eigenvalues for both the sim-
ulation model and input examples, and normal-
ize the eigenfunctions;

(3) Align the examples’ eigenfunctions with
the object’s top m eigenfunctions;

(4) Project the geometry of all examples onto
their eigenfunctions and get corresponding co-
efficients as the shape descriptors in the non-
inertial frame;

(5) Compute the nonlinear modal basis for the
model;

(6) Compute the optimized cubature elements
using the random forces and the input reduced
modal basis.
Run-time:

(1) Obtain the non-inertial frame displace-
ment of the current configuration and project the
displacement to the Laplace-Beltrami shape s-
pace for the shape description;

(2) Find the target configuration according to
the examples and object’s current configuration
in the Laplace-Beltrami shape space, and the
shape interpolation process is computed in the
non-inertial frame;

(3) Reconstruct the shape of the target inter-
polation configuration from Laplace-Beltrami s-
pace to the Euclidean space to calculate the
example-driven force, which is computed by the
linear force with the displacement of the current
and target configuration by simplicity;

(4) Perform the rigid body simulation frame-
work in inertial frame;

(5) Compute the deformed simulation with
the example-driven force, the external forces
and the forces caused by the rigid motion in non-
inertial frame, step the deformed simulation;

(6) Project the non-inertial frame displace-
ment to the inertial frame to render the defor-
mation.

We demonstrate the runtime overview in Fig-
ure 1. Three spaces have been described here.
In the Euclidean space, three input poses of the
elastic cuboid are given as examples as geom-
etry shapes, each with different number of ver-
tices. All the geometry shapes are projected on-
to their first m eigenfunctions in the Laplace-
Beltrami interpolation space(black points). In
the interpolation process, we build a connection
from Laplace-Beltrami shape space to the model
reduction subspace to compute the elastic ener-
gy quickly. After the interpolation process, the
target configuration (red point) in the Laplace-
Beltrami space is reconstructed to the Euclidean
space.

Figure 1: Overview of run-time operations.

4.2 Space description

For the whole simulation framework, we have
three spaces and we will explain them in details.
We have listed most of the variables of this paper
in Table 1.
Laplace-Beltrami subspace Based on Laplace-
Beltrami eigen-analysis method, we obtain the
eigenfunctions on the volumetric mesh. There
are several ways to approximate the Laplace-
Beltrami operator and its eigenfunctions on dis-



Table 1: Symbols. This table summarizes some of the symbols.
Symbol Dimension Definition
m scalar num of aligned eigenfunctions
r scalar num of nonlinear modal basis
s scalar num of optimized cubature elements
n scalar num of vertices of the object
u 3n vector displacement in the fullspace
q r vector displacement in the model reduction subspace
l 3m vector shape description in the Laplace-Beltrami subspace
U 3n× r matrix the nonlinear modal basis
L 3n×m matrix top m eigenfunctions aligned between the examples and the object
T m× r matrix projection from Laplace-Beltrami shape space to model reduction subspace
x̃(q) 3n vector the vertex position in the non-inertia frame
v, ω 3 vector linear and angular velocities in non-inertia frame of rigid simulation
v̇, ω̇ 3 vector linear and angular acceleration velocities in non-inertia frame

crete representations of manifolds. We choose
the linear FEM approximation for its highly ac-
curacy [19, 20]. The normalized eigenfunctions
construct the reduced interpolation shape space.
The volumetric mesh in the Euclidean space
can be projected to Laplace-Beltrami subspace,
while the shape description of the reduced in-
terpolation shape space can be reconstructed in
the Euclidean space by using eigenfunctions and
eigenvalues. The eigenfunctions are normalized
and computed on the tetrahedral mesh, and the
values of the eigenfunctions on each vertex is
between 0 and 1. We render the eigenfunction-
s with different colors on each vertex using the
piecewise linear function. We demonstrate the
second eigenfunction for the interior of the ar-
madillo model as Figure 2. The first constan-
t eigenfunction is excluded from the computed
eigenfunctions since it encodes only rigid mo-
tion of rotation and translation.

Figure 2: Rendering interior eigenfunction ef-
fect for the armadillo model.

The eigenfunction of different shapes need to
be aligned before they can be used as the com-
mon basis. We align the eigenfunctions with the
method in [21]. The registration process is con-
venient and can be computed in advance.
Full-space Full-space is the geometry descrip-
tion in Euclidean space and it is the transition s-
pace between the Laplace-Beltrami shape space
and the model reduction subspace. Also we ren-
der the deformation displacement and excecute
the rigid motion in this frame.
Reduced subspace constructed by modal ba-
sis The subspace is constructed by the nonlinear
modal basis in the pre-computation process. In
our current implementation, we use linear modal
analysis and modal derivatives proposed in [13]
to generate both linear and nonlinear deforma-
tion modes in the basis.

The spaces can be converted to each other as:
(1) Project to the Laplace-Beltrami space.

The geometry description of the examples and
the object in Euclidean space is projected onto
the Laplace-Beltrami interpolation subspace by
their own eigenfunctions. The projection is done
through volume-inner product of the shape’s ge-
ometry and its Laplace-Beltrami eigenfunctions,
which can be described as:

(< px, λiLi >,< py, λiLi >,< pz, λiLi >)
(3)

where 1 ≤ i ≤ m, p(px, py, pz) is the geome-
try vertices position in Euclidean space, λi,fi is
the i-th eigenvalue and its corresponding eigen-



function, and <,> represents the volume-inner
product. The description in Lapalace-Beltrami
subspace is a m× 3 vector.

(2) Reconstruct geometry shapes in the
Euclidean space. By using the equation:
m∑
i=1

li
1
λi
Li, we get a geometry description of Eu-

clidean space.
(3) Project shape description from Laplace-

Beltrami space to the model reduction subspace.
As Zhu et al. [2] did in each time step, the shape
descriptor is reconstructed in the Euclidean s-
pace and the nonlinear elastic energy is comput-
ed by a geometry deformation energy on the ob-
ject’s surface mesh, which is a time-consuming
process. To accelerate the target shape inter-
polation process, we solve the elastic energy
in the model reduction subspace described as
equation (6) by using the optimized cubature
elements. Since we have to utilize the Eu-
clidean space as the transition space between the
Laplace-Beltrami shape space and the model re-
duction subspace, which need to compute the
large matrix-multiply operation twice with ma-
trix L and matrix U , which are constant in the
whole simulation process and can be computed
beforehand. We propose a direct projection ma-
trix from Laplace-Beltrami subspace to model
reduction subspace by computing T = LTU .

4.3 Shape interpolation

The shape interpolation process is to find the op-
timized target configuration in the example man-
ifold for the current configuration. In our sys-
tem, we solve the shape interpolation problem
totally in reduced space.

The deformable object is represented by a
tetrahedral mesh with n vertices. The input ex-
amples are consist of k poses, represented as m-
dimensional points ei(1 ≤ i ≤ k) in the shape
space spanned by the eigenfunctions. We inter-
polate the examples to get the target configura-
tion that guides the deformation of the object.
Similar as [2] did, we also use nonlinear inter-
polation approach. The target configuration t
is defined as the one that minimizes the sum of
weighted deformation energies to all examples:

min
t

k∑
i=1

ωiE(t, ei) (4)

where E(·, ·) is the non-linear deformation en-
ergy between two shapes, ωi(1 ≤ i ≤ k) mea-
sures the guiding strength of the examples and
k∑

i=1
ωi = 1. The interpolation weight for each

example weight according to its closeness with
the object’s configuration c in each time step:

min
ωi

1

2

∥∥∥∥∥
k∑

i=1

ωiei − c

∥∥∥∥∥
2

F

(5)

In their method, the geometry energy is com-
posed of three terms: stretching term, bending
term and volume preservation term. Their ge-
ometry energy measurement is relative to the
geometry description, and the resolution of the
mesh will definitely decide the solving efficien-
cy. To obtain a target interpolation configura-
tion for the current deformation of the objec-
t, the nonlinear interpolation process is a non-
linear optimization which contains several iter-
ation steps. It is time-consuming to compute
the energy and its gradient in the Euclidean s-
pace at each iteration step. We accelerate the
process by computing the energy with the cuba-
ture integration method provided by [3] in the
model reduction subspace. As noted in 4.2, we
have a direct projection from Laplace-Beltrami
shape subspace to the model reduction subspace.
With the projection, the elastic energy and its
corresponding energy gradient can be comput-
ed easily for each target configuration. Accord-
ing to the method, the elastic force can be for-
mulated in terms of a potential energy function,
E(q) : Rr → R, given by the domain integral,

E(t, ei) =

∫
Ω
Ψ(Xei ; qei)dΩX

=

s∑
j=1

ωjΨj(Xei ; qei)
(6)

where the undeformed shape Xei is the ith ge-
ometry shape in the Euclidean space recon-
structed from the Laplace-Beltrami space with
the object’s eigenfunction, Ψ(Xei ; qei) is the
nonnegative strain energy density at material
point Xei in the undeformed material domain Ω,
s is the number of cubature elements and qei de-
scribes the displacement between the target con-
figuration and example ei in the model reduction
space. The optimizing cubature elements and



the corresponding weights obtained in the pre-
computation process.

5 Results

We test our system on an Intel Core i5 2.8GHz
processor. We use the OpenMp library to paral-
lelize our simulation steps. Time step size is uni-
formly set to 0.001s for all simulations. Current-
ly, we choose the StVK material model, while
our proposed method is not limited to the using
material. We use two input examples for all the
experiments in the paper.

As shown in Figure 3, the first picture is the
initial configuration, the second bar deformed
under a twisted force on the bottom simulated in
the full space, the third twisted bar is deformed
with the same topology between the input exam-
ples and the object in the full space, the fourth
one demonstrates the twisted bar deformed by
different topology examples(cylinder examples)
in the full space, and the last picture shows the
twisted bar deformed on the same situation as
the fourth one which is performed in the reduced
space with our method. The last four pictures
show similar deformation effects with differen-
t conditions, and our method with different in-
put examples computes the interpolation shape
in the model reduction space which achieves e-
qually animation effect as in the full space.

Figure 3: Bar deformed with different
situations.

Without constrains As [22] pointed out, the
simulation method in reduced subspace is not
suitable for simulating the rigid motion of a
deformable object, since incorporating rigid
modes into the basis U will cause U to be time-
dependent and we cannot afford updating U over
time. We simulate the rigid motion separately
from subspace deformation by rigid body dy-
namics, as did in [13, 23, 24]. The free motion
simulation object contains the rigid motion and
deformed motion. The shape interpolation pro-

cess and the simulation process in the reduced
space are computed in the non-inertial frame.
Figure 4 and Figure 5 show the simulation ef-
fects for deformable objects without constrains.

Figure 4: An elastic bar deforms under gravity
using a S-cuboid shaped example and
a S-cylinder shaped example.

Figure 5: A car model hits the wall and re-
acts in diverse ways with no ex-
ample(top left), an arc-shaped ex-
ample(top right), a s-shape exam-
ple(bottom left) and a twisted exam-
ple(bottom right).

With constrains The object simulation with
constrains is much more easier than the free
motion one since the deformation excluded the
rigid motion. As shown in Figure 6, the teddy
model is fixed on the back. The first picture is
the rest configuration, the second one shows the
deformation of the left part of the model under
the drag force enforced on the left leg, and the
third one shows the global deformation between



the two legs and two arms.

Figure 6: An elastic teddy deformed with local
and global examples.

Local examples The method is easily extend-
ed to the local examples. We partition the en-
tire simulation object into separate regions, each
part is influenced by the corresponding example
regions independently. We project each region
on the entire object’s Laplace-Beltrami eigen-
functions. The rest vertices displacement of the
object excluded each region are set to zero. Each
local region is handled independently, thus we
achieve complex behaviors for different local
examples. We demonstrate the local examples
as Figure 7. The top three figures show differ-
ent examples as the twist shape, the horizonal
direction s-bend shape, and the vertical direc-
tion s-bend shape, respectively. The deforma-
tion result shows on the second line, the first pic-
ture is the initial configuration, the second pic-
ture shows the left region and the right region
of the cross deformed with the first and second
examples respectively, and the last one shows
the middle region of the cross influenced by the
third example. In Table 1, we list the detailed
parameter settings and the performance data for
all the examples presented in the paper. The re-
sults in this paper are produced with practical
computation time. We can find out the time ef-
ficiency is obviously better than the method in
[2]. We achieve a real-time simulation effect s-
ince we solve the energy minimization problem
in the reduced subspace and we utilize the opti-
mized cubature elements to find the target con-
figuration. The optimized cubature elements can
be computed in advance with the method pro-
posed in [3, 25, 26].

6 Conclusions

We present a real-time framework for example-
based elastic materials with different topology

Figure 7: Eigenfunctions of the three local re-
gions on the cross shape are comput-
ed, respectively.

structures between the simulation object and in-
put examples with FEM. We compute the eigen-
functions on the tetrahedral mesh with the linear
FEM approximation for the Laplace-Beltrami
Operator eigen-analysis method to construct the
shape interpolation subspace. We propose the
direct projection from the Laplace-Beltrami sub-
space to the model reduction subspace, which is
convenient to compute the elastic energy with
the optimized cubature elements. Finally, we
separate the rigid motion from the deformable
motion with the inertia frame and the non-
inertial frame. Our experiments demonstrate the
flexibility and the highly simulation efficiency
for the example-based materials to some extend.

In the subspace simulation method for de-
formable objects, an important question is
whether collisions can be handled in the sub-
space as well. We do not take much time on the
collision problem. For simplicity, we choose the
penalty force for collision force in the full-space
which provided some collision-artifact. This
problem can be extended in the subspace to im-
prove the efficiency as [27, 28] did in the future.
Finally, although our system separates rigid mo-
tions from non-rigid motions, it is not strictly
correct and the result can be different from the
result of full-space simulation. Sometimes the
system will unstable on the rotation caused by
the collision force and example force.



Model DOFs Tets Ex. m r s
Zhu et.al[2] our method

tinterp ttotal tinterp ttotal
bar-cuboid 981 1053 327 10 30 60 51.2 55.5 35.1 41.5
bar-cylindar 981 1053 2478 10 30 60 266.8 271.6 32.7 39.4
cross 4683 4912 3172 10 42 21 564.1 592.4 11.9 18.3
car 2181 2369 1019 6 20 23 207.7 221.6 16.7 21.2
teddy-global 1773 1755 11193 6 30 30 70.3 83.5 28.7 33.4
teddy-local 1773 1755 11193 6 30 30 302.8 313.7 33.2 38.4

Table 2: Summary of all results presented in the paper. The columns indicate the number of DOFs of
the object, the number of tetrahedral elements of the object, the vertices number of the last
example, the number of the selected eigenfunctions, the number of modal basis, the number
of cubature elements, average time(in milliseconds) for example interpolation and total time
for one simulation step of [2] and our method, respectively.
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