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Abstract
We extend the material point method (MPM) for robust simulation of extremely large elastic deformation. This
facilitates the application of MPM towards a unified solver since its versatility has been demonstrated lately
with simulation of varied materials. Extending MPM for invertible elasticity requires accounting for several of
its inherent limitations. MPM as a meshless method exhibits numerical fracture in large tensile deformations.
We eliminate it by augmenting particles with connected material domains. Besides, constant redefinition of the
interpolating functions between particles and grid introduces accumulated error which behaves like artificial
plasticity. We address this problem by utilizing the Lagrangian particle domains as enriched degrees of freedom
for simulation. The enrichment is applied dynamically during simulation via an error metric based on local
deformation of particles. Lastly we novelly reformulate the computation in reference configuration and investigate
inversion handling techniques to ensure the robustness of our method in regime of degenerated configurations. The
power and robustness of our method are demonstrated with various simulations that involve extreme deformations.

Keywords: material point method, dynamical enrichment, invertible elasticity

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

The graphics community endeavors in creating impressive
visual effects for animated movies and computer games.
These effects vary from exaggerated squash and stretch to
melting chocolate and flowing water. Specialized solvers
are frequently used for specific phenomena, while a unified
method to achieve these varied effects is strongly favored
and remains an active research topic.

The material point method (MPM) has recently been
embraced by the graphics community due to its versatility
in simulating varied material behaviors. Its capability is
well demonstrated with compelling visual simulations of
snow [SSC∗13] and other wide range of materials [SSJ∗14,
RGJ∗15, YSB∗15]. However, the simplest yet most ubiqui-
tous hyperelastic deformation turns out to be difficult for
MPM, which hinders its application as a unified simulation
solver. The difficulty stems from the inherent limitations
of MPM. Firstly, numerical fracture is almost inevitable

because MPM is a meshless approach. Spurious tensile
instability may arise when particles are separated beyond
the influence range of grid cells. Secondly, MPM constantly
redefines the interpolating functions between particles and
the background grid during simulation, which introduces
error. Inaccuracies of the deformation gradient computation
accumulate as the so-called artificial plasticity. Moreover,
simulating invertible elasticity introduces challenges that
are more thorny than a general deformable solver because
of potential degenerated configurations. Despite all these
difficulties, MPM reveals the greatest potential of becoming
a unified solver among existing approaches. Therefore it
is worthwhile to explore extensions of MPM for possible
unification.

In this paper we enhance MPM with the capability to
simulate invertible elasticity, where deformations could be
so wild that the determinant of deformation gradient may
become negative. To our knowledge, it is the first time MPM
has been extended for such extremely large deformations.
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Figure 1: Buddha returns to rest state after simultaneous twisting and compression. Our enhancements extend the capability of
MPM to simulate such extreme elastic deformations.

We present a number of novel contributions to achieve
this goal. First, we introduce the idea of convected particle
domains [BK04, SBB11, SBG13] to graphics by attaching a
Lagrangian mesh with the particles. Generally there is no
need for Lagrangian mesh connectivity in standard MPM,
while with particle domains our method acquires several at-
tractive features. Numerical fracture of MPM is eliminated,
and we are capable of reformulating the computation in
reference configuration. This reformulation combined with
proper inversion handling techniques ensures robustness in
degenerated deformations. The second contribution of ours
is a novel enrichment strategy to reduce accumulated errors
of MPM. We propose a metric to monitor the inaccuracy
of particle deformation, and the simulation is enriched with
the particle domains as additional degrees of freedom once
the metric is satisfied. Our approach is one of the very few
methods in graphical simulation [GKS02, KMB∗09] that
adopt the idea of enrichment to obtain additional degrees of
freedom. See Figure 1 for a demonstration of our method
handling extreme elastic deformations.

2. Previous Work

A complete review of the vast methods proposed thus far in
computer graphics for physics-based simulation is beyond
the scope of this paper. We restrict the following literature
discussion to previous research on the material point method
and handling of invertible elasticity.

The material point method is relatively new in computer
graphics. As far as we know, Zhu and Bridson [ZB05] first
mentioned it in their work without deeper investigation. Its
debut as a practical technique was not made until Stomakhin
et al. used it for snow simulation [SSC∗13]. Subsequent
works further explored its strength in simulating a broader
spectrum of material behaviors [SSJ∗14,RGJ∗15,YSB∗15].
Jiang et al. [JSS∗15] recently presented a method to reduce
the dissipation between particles and grid by augmenting
particles with a locally affine description of velocities. In

fact, graphics researchers have studied employing Eulerian
grid in simulation before. McAdams et al. [MSW∗09] used
a cartesian grid to model hair collisions in a dynamics
solver based on mass-spring systems. Levin et al. [LLJ∗11]
dealt with elasticity in an Eulerian framework and resolved
contacts with constraints. These methods are analogous to
MPM in the way of using the grid.

Although new to graphics, the analysis and applications of
MPM have been extensively studied in engineering field. It
was first proposed by Sulsky et al. [SCS94] as an extension
of the fluid-implicit particle (FLIP) method [BR86], and
substantial improvements were presented thereafter. Bar-
denhagen [Bar02] analyzed the energy conservation error
in MPM by comparing different stress updating strategies.
Steffen et al. [SKB08] studied the quadrature error and grid
crossing error of MPM. They advocated the use of smoother
basis functions to reduce these errors. Further investigations
were carried out by Andersen and Andersen [AA10]. An
alternative way to obtain a smoother field representation
was the so-called generalized interpolation material point
method (GIMP) [BK04], in which the notion of particle
domains was first proposed. Quantities are smoothed inside
the particle domains by combining the shape function of
grid and the particle characteristic function. Sadeghirad and
colleagues presented the convected particle domain interpo-
lation method (CPDI) [SBB11], where particle domains are
transformed as parallelograms with the local tangent affine
deformation of particles. Accuracy was improved for large
tensile deformations, while gaps between particles were
not completely removed. They later improved accuracy to
second order by tracking particle domains as quadrilaterals
in 2D [SBG13]. We draw inspiration from these methods for
using particle domains, but also propose novel contributions.
Instead of using formulation in world space like them, we
take advantage of the Lagrangian nature of particle domains
and conduct reformulation in the reference configuration.
Robustness in extreme deformations is ensured, and it sim-
plifies our enrichment with inversion handling. Enrichment
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Figure 2: Armadillo is hit by a ball. MPM enhanced with
particle domains prevents numerical fracture in large tensile
deformations.

was also employed in [SBG13], but with a different goal
of handling weak material discontinuities. Other research
focuses on aspects of MPM that are less related to ours, such
as contact algorithms [HZMH11, MWR14], crack growth
[TN02, DLCK07], and implicit time integration [GW03,
SK04].

Simulating invertible elasticity requires robust handling
of physically invalid deformation mapping whose Jacobian
has a negative determinant. Irving et al. [ITF04] developed
the invertible finite element (IFE) framework for tetrahedral
elements that extends arbitrary elastic constitutive models to
inverted configurations. They later extended the method to
hexahedral elements [ITF06]. Teran et al. [TSIF05] consid-
ered the difficulty in implicit time integration and presented
a modified Newton-Raphson algorithm which can robustly
iterate through inverted configurations. All these methods
detect inversion via diagonalization of deformation gradient,
and fix the invalid first Piola-Kirchhoff stresses. Stomakhin
et al. [SHST12] proposed an energy-based approach that is
more robust. They provide both C1 and C2 extensions to
arbitrary isotropic energy densities. All these methods were
designed for Lagrangian FEM, and we adopt the ideas in our
MPM approach with Lagrangian particle domains.

3. Method Overview

The basic change we have made to standard MPM is the
adoption of particle domains, which act as a middleware in
the interplay of particles and background grid. The transfer
of particle data to grid (equivalently referred as rasterization)
can be regarded as a two-step procedure where quantities
are first mapped to the corners of particle domains and then
to the grid nodes, and vice versa. The key contributions of
our work are built upon this seemingly simple enhancement.
First, connectivity information of particle domains removes
numerical fracture because initially neighbored particles
interact with each other consistently through the common
particle domain corners (see Figure 2). Second, data transfer
between particles and domain corners is free from the
accumulated error as the interpolation functions are defined

in material space. This inspires us to halt the rasterization
at the domain corner layer in case of severe inaccuracy
and remedy the simulation by employing domain corners as
additional degrees of freedom. We have designed an enrich-
ment metric based on particle deformation and dynamically
enable/disable the simulation on domain corners with this
metric. Finally, the Lagrangian particle domains allow us to
reformulate the computation in reference configuration, and
by borrowing techniques from the invertible FEM methods
we can robustly handle deformations that involve degen-
erated states. The full update procedure of our method is
outlined in Algorithm 1, and we will describe the details in
following sections.

Algorithm 1 Dynamically Enriched MPM

1: repeat
2: //mark particle domain enrichment state
3: for all particles do
4: if enrichment metric is satisfied then
5: mark its domain corners as enriched
6: //rasterize
7: for all particles do
8: rasterize data to its domain corners
9: for all domain corners of the particle do

10: if domain corner is not enriched then
11: rasterize data to the grid
12: //solve on grid and enriched domain corners
13: for all active grid nodes do
14: update velocity by time integrating the dynamics
15: for all enriched domain corners do
16: update velocity by time integrating the dynamics,

handle inversion during the solve
17: resolve body collisions on grid nodes
18: update particle deformation gradient
19: //update particle velocities via two-step interpolation
20: for all unenriched domain corners do
21: update velocity via hybrid PIC/FLIP interpolation

of grid velocities
22: resolve body collisions on domain corners
23: for all particles do
24: update velocity as interpolated corner velocities
25: //update domain corner positions
26: for all domain corners do
27: if domain corner is enriched then
28: update position by time integrating velocity
29: else
30: update position with interpolated grid velocities
31: for all particles do
32: update position as interpolated corner positions
33: until simulation terminated
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Figure 3: Illustration of MPM with particle domains
in 2D (bottom). The dots in red/yellow/green stand for
enriched/transitional/unenriched particles, the squares are
enriched domain corners. Rasterization of quantities in the
highlighted region is shown in the top of the figure.

4. MPM with Particle Domain

In standard MPM, particles interact with grid nodes as
material points with concentrated mass. Better approxima-
tions can be achieved by modeling particles as material
regions of a continuum. We propose to attach one particle
domain with each particle, which represents the underlying
portion of material. The particle domains are represented as
quadrilaterals in 2D and hexahedrons in 3D. See Figure 3 for
an illustration of MPM with particle domains in 2D. In this
section, we defer the discussion of enrichment and describe
our method without enrichment first.

Inside particle domains, alternative grid basis functions
are constructed to be an interpolation of standard grid basis
functions at the corners of particle domains:

ω
∗
i (x) = ∑

α

N p
α(x)ωi(x

p
α). (1)

ωi(x
p
α) is the standard grid shape function associated with

grid node i evaluated at domain corner xp
α, and N p

α(x) is the
FEM-style shape function defined for the α

th corner of the
particle domain evaluated at point x inside the domain.

We use the FEM shape function for linear hexahedral
(quadrilateral) elements as our shape function of particle
domains. We refer the readers to textbooks such as [Hug00,
Bel00] for detailed explanations of such function. For the
grid shape functions ωi, we use dyadic products of one-
dimensional piecewise linear functions

ωi(x) = ω(
1
h
(x− xi))ω(

1
h
(y− yi))ω(

1
h
(z− zi)), (2)

Figure 4: Egea falls through a shrinking tunnel and is
compressed violently. Robustness of simulation is ensured
with our reformulation in reference configuration.

where xi = (xi,yi,zi) is the position of grid node,
x = (x,y,z) is the evaluation position, h is the grid spacing
and

ω(x) =
{

1−|x|, 0≤ |x|< 1
0, otherwise

. (3)

Data transfer between grid and particle domain corners
are performed via ωi(x), while inside particle domains it is
typical FEM approximation for linear hexahedral elements.
Putting it together, particles interact with the grid using
domain corners as a middleware.

As particles are in essence material regions, quantities
carried by particles are computed as averages over their par-
ticle domains. Averaging over the particle domains involves
spatial integration of quantities and dividing the results by
volumes of the domains. This could result in numerical fail-
ure in case of degenerated configurations during simulation,
e.g., flat particle domains by compression (see Figure 4).
Hence we opt for the reference configuration to evaluate
the result such that robustness is ensured. This differs our
method from previous methods [BK04,SBB11,SBG13] that
employ similar idea of particle domains. The interpolating
function between particles and grid along with its gradient is
evaluated as below:

ωip =
1

V 0
p

∫
Ω0

p

ω
∗
i (X)dΩ,

∇Xωip =
1

V 0
p

∫
Ω0

p

∇Xω
∗
i (X)dΩ.

(4)

The gradient is computed with respect to reference coordi-
nate X, ω

∗
i is the grid basis function inside particle domains,

and Ω
0
p is the undeformed configuration of particle domains.

Replacing ω
∗
i with the form in Equation 1, we get:

ωip =
1

V 0
p

∑
α

ωi(x
p
α)

∫
Ω0

p

N p
α(X)dΩ,

∇Xωip =
1

V 0
p

∑
α

ωi(x
p
α)

∫
Ω0

p

∇XN p
α(X)dΩ.

(5)

The integral over undeformed particle domain averaged
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by domain volume is defined as the interpolating function
between particles and domain corners:

ωαp =
1

V 0
p

∫
Ω0

p

N p
α(X)dΩ. (6)

It can be precomputed, and the integral is approximated
with Gauss quadrature in our implementation. We can write
ωip as ωip = ∑α ωαpωi(x

p
α).

With interpolating functions expressed in the reference
configuration, the deformation gradient for each particle is
updated as:

Fn+1
p = Fn

p +4t∇Xv
n+1
p , (7)

where we have computed ∇Xv
n+1
p = ∑iv

n+1
i (∇Xω

n
ip)

T .
Please note the difference compared with the update rule
of standard MPM where formulation is constructed with
respect to spatial configuration [SSC∗13].

The force on grid node i resulting from elasticity is now
written in terms of the first Piola-Kirchhoff stress P as:

fi(x) =−∑
p

V 0
p P∇Xωip. (8)

Particle velocities are interpolated from grid in a hybrid
PIC/FLIP manner: vn+1

p = (1−α)vn+1
PICp

+αvn+1
FLIPp

, where

the PIC part is vn+1
PICp

= ∑iv
n+1
i ωip, and the FLIP part

is vn+1
FLIPp

= vn
p + ∑i(v

n+1
i − vn

i )ωip. We typically used
α = 0.95. Considering the construction of ωip, this is iden-
tical to first interpolating grid velocities to particle domain
corners and then to particles.

Particle domains are convected with velocities on grid
if no enrichment is present. Evolving particle geometry
is described by tracking locations of the particle domain
corners:

xn+1
α = xn

α +4t ∑
i

ωi(x
n
α)v

n+1
i . (9)

ωi(x
n
α) is the value of standard grid basis function at the

α
th corner of particle domain. We compute new positions

of particles as interpolated positions of domain corners
such that particles do not drift from particle domains:
xn+1

p = ∑α ωαpx
n+1
α . It is worth noting that the convected

domains move particles through the background grid, while
the particles and corresponding domains remain fixed with
each other.

4.1. Embedded Surface Meshes

Obtaining high quality rendering for particle methods is
generally more challenging than mesh-based methods.
Existing approaches include volume rendering [FAW10],
screen space rendering [vdLGS09], surfel model
[PKKG03, PKA∗05], and meshing techniques [YT13].
Among these methods, rendering with surface meshes

reconstructed from particle data is the most prevalent. While
the meshing solution is widely used for liquid rendering,
additional tuning such as mesh smoothing is often required.
In the case of deformable objects, it is difficult to obtain
a time-consistent mesh sequence with as much detail as
needed.

Fortunately, particle domains equip our method with the
luxury of using embedding techniques for rendering. We
embed high-quality surface meshes in particle domains,
and update mesh vertex positions during simulation via
interpolation. The deformed surface meshes are rendered
offline to generate the figures presented in this paper.

5. Dynamical Enrichment

We have not discussed enrichment thus far. In this section we
will provide a detailed description of our enrichment strategy
and explain the changes that have to be made with respect to
the method without enrichment.

Standard MPM employs a fixed background grid as a
scratch-pad of the stress-based computation. The coupling
between Lagrangian particles and Eulerian grid requires re-
defining interpolating functions in each time step according
to their spatial positions. The data transfer between different
representations leads to an inevitable loss of information
due to the mismatch of resolutions. This error is reflected
in the deformations and positions of the particles, and it
is accumulated by constant redefinition of weight functions
through the simulation. Objects could not return to rest state
because of the deviations in particle positions, even if pure
elastic constitutive models are employed. This behavior may
be ideal for plasticity, while it must be removed for elasticity
simulation. Our enrichment idea is based on the observation
that shape functions of the particle domains are fixed in
material space and therefore no extra error is accompanied
with the interpolation inside particle domains. With this
in mind, we propose to halt the interplay between particle
domain corners and grid if severe inaccuracy is detected, and
employ domain corners as enriched degrees of freedom. The
enrichment is a dynamical process determined by a metric
that we have designed to measure inaccuracy.

5.1. Enrichment Metric

We design the enrichment metric based on an intuitive
assumption that more severe deformation is accompanied
with more error in MPM computation. With this convention,
our metric is defined as a measure of the amount of particle
deformation. It is the reciprocal of the condition number of
particle deformation gradient:

K(Fp) =
1

‖F−1
p ‖F · ‖Fp‖F

, (10)

where ‖·‖F is the Frobenius norm. K(Fp) is a scalar function
of Fp in the range of 0 to 1, where greater values denote
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Figure 5: Gorilla collapses into flat configuration due
to disabled physics (top), and quickly recovers from the
degenerated state after the material strength is enabled
(bottom).

better condition and vice versa. Therefore the enrichment
criterion is K(FP)≤ ε, with ε typically set to 0.6.

It is difficult to numerically evaluate F−1
p if Fp is ill-

conditioned. This corresponds to extreme deformation with
configurations close to degeneration. We will introduce the
inversion handling procedure of our method in Section 5.3.

5.2. Simulation with Enrichment

At the beginning of each time step, we evaluate the metric
function for each particle and mark all of its domain corners
as enriched if the enrichment criterion is satisfied. Particles
are thereby divided into three categories: enriched, transi-
tional, and unenriched. Enriched particles are the ones with
all their domain corners marked as enriched, transitional
particles have both enriched and unenriched domain corners,
and unenriched particles have no enriched domain corners
(Figure 3). After the enrichment, the domain corners marked
as enriched are also employed as computation nodes.

The dynamical enrichment alters the behavior of data
transfer in our approach. During rasterization, the two-step
data mapping stops at the enriched particle corners and will
not continue to the grid. Enriched particles affect only the
enriched particle corners, particles with no enriched corners
map data to the grid in an ordinary way, and the particles in
transition rasterize to both enriched domain corners and grid
nodes. We illustrate the rasterization with enrichment in the
top of Figure 3.

Figure 6: Percentage of enriched particles in the Gorilla
example. The percentage changes dynamically during sim-
ulation. The color-mapped gorillas illustrate the distribution
of enriched particles at time points denoted by green dots.

We update the velocities and positions of enriched domain
corners by time integration. The mass of domain corners is
precomputed by rasterizing particle masses via ωαp (Equa-
tion 6). Forces on the enriched domain corners are computed
in the same manner with the forces on grid, replacing the
corresponding weight functions. By contrast, the unenriched
corners are updated through interpolation from the grid as
introduced in Section 4.

In our enriched MPM, the approximation of a quantity
F(x) carried by the particle is described as:

F(xp) = ∑
i

ωipFi +∑
α̂

ωα̂pFα̂, (11)

where α̂ is the enriched domain corners. As we can see,
it is a generalization of our method without enrichment.
The CPDI2 method [SBG13] also uses enrichment, the
difference is that they use it for weak material discontinuities
while we focus on reducing accumulated error due to weight
function redefinition. Our dynamical enrichment metric is
specially designed for this goal.

Particle velocities are still updated with the hybrid
PIC/FLIP style interpolation, where both vn+1

PICp
and vn+1

FLIPp

are computed with Equation 11. Interpreted in the other
way, they are still computed via two-stage interpolations,
only that velocities of enriched corners are not determined
by the grid.

For particles with enriched domain corners, we compute
the gradients of velocity ∇Xv

n+1
p = ∑iv

n+1
i (∇Xω

n
ip)

T +

∑α̂v
n+1
α̂

(∇Xω
n
α̂p)

T , and update deformation gradients with
Equation 7.

Figure 5 is an example of simulation with our dynamical
enrichment. Corresponding percentage of enriched particles
during simulation is illustrated in Figure 6.
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5.3. Inversion Handling

Since we have tackled accumulated error with enrichment,
we take one step further by handling inversion in simulation.
Enriched simulation on particle domains is analogous to
Lagrangian FEM, and hence we could use invertible FEM
techniques to handle inversion of the enriched domains.
Several solutions have been presented previously for FEM
[ITF04, TSIF05, ITF06, ST08, SHST12], and we choose
to build on the method by Irving et al. [ITF04] for the
simplicity of implementation.

In each time step we diagonalize the particle deformation
gradient Fp via rotations U and V to obtain Fp = UF̂pVT .
F̂p is a diagonal matrix that denotes particle deformation in
principal directions. An entry that is near zero corresponds to
the case of flat particle domain, and negative value indicates
inversion. Following Irving et al. [ITF04], we clamp the
entries at some critical value if they are below that value. The
first Piola-Kirchhoff stress P for each particle is computed
as P = UP̂VT , where P̂ denotes the stress computed from
F̂p. Fp after the clamp operation is in good condition, and
we use it to compute the enrichment metric K(Fp) without
numerical failure issues.

This simple inversion handling strategy ensures that the
enriched simulation on particle domains can robustly recover
from inverted configurations.

6. Robust Implicit Update

We update the velocities using implicit time integration to
achieve practical performance with acceptable time step.
Following Stomakhin et al.’s work [SSC∗13, SSJ∗14] we
linearize the implicit system with one step of Newton’s
method, which yields a (mass) symmetric system for vn+1

ĩ :

∑
j̃

(Iδĩ j̃ +4t2m−1
ĩ

∂
2
Φ

n

∂xĩ∂x j̃
)vn+1

j̃ = v∗ĩ , (12)

where the right hand side is the result of explicit time
integration:

v∗ĩ = vn
ĩ +4tm−1

ĩ fĩ. (13)

It is worth noting that ĩ = {i, α̂} here includes not only
the background grid nodes i but also the enriched particle
domain corners α̂. We will omit the tilde in the remainder of
this section for more compact notation.

We solve the linear system in Equation 12 using the
Conjugate Gradient method (CG) [She94]. Since CG is
an iterative solver, we never explicitly form the coefficient
matrix and instead evaluate its multiply with an arbitrary
increment. The Hessian of the potential energy Φ acted on
an increment δu is expressed as:

−δfi = ∑
j

∂
2
Φ

∂xi∂x j
δu j = ∑

p
V 0

p Ap∇Xωip, (14)

where

Ap =
∂

2
Φ

∂Fp∂Fp
: (∑

j
δu j(∇Xω jp)

T ). (15)

The expressions are different compared with Stomakhin
et al.’s [SSC∗13] due to our reformulation in material space.

The system could become indefinite in case of severe
deformations and causes solver failure. It is undesirable,
especially for simulations involving massive degenerated
configurations. To enforce positive definiteness of the sys-
tem and thereby robustness of the solving, we employ the
remedy proposed by Teran et al. [TSIF05] and manipulate
Equation 15 into:

Ap = U
{

∂
2
Φ

∂F∂F

∣∣∣∣
F̂p

:
(

UT (∑
j

δu j(∇Xω jp)
T )V

)}
VT ,

(16)
where U, V and F̂p are obtained from the diagonalization of
particle deformations as introduced in Section 5.3.

We use a Jacobi preconditioner to accelerate convergence
of the CG solver and thus reduce the simulation run times.
The preconditioner for Equation 12 is of the form

Pii = ∑
p

diag(mpωipI+4t2V 0
p H), (17)

where

H =
∂

2
Φ

∂Fp∂Fp
: (∇Xωip(∇Xωip)

T ), (18)

and taking positive definiteness into consideration H now
becomes

H = U
{

∂
2
Φ

∂F∂F

∣∣∣∣
F̂p

:
(

UT (∇Xωip(∇Xωip)
T )V

)}
VT .

(19)

The preconditioned solver normally converged within
20 iterations in practice. Occasionally it would take more
iterations due to sudden impact of collision objects. The
overall iterations reduced greatly compared with solving
without a preconditioner.

7. Results

We have simulated a variety of examples that demonstrate
the power of our method. All these simulations involve
extreme deformations, most of which result from impact
by collision objects. We process collisions with objects
following Stomakhin et al. [SSC∗13], except that we apply
collisions to domain corners in the second phase instead of
to particles. Collided domain corners are projected to the
surface of collision objects in the normal direction to prevent
penetration, while the impulse due to collision is applied on
particles.

Figure 1 is an example of buddha model with prescribed
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Figure 7: Kitty is forced to fall through a funnel. The
hyperelastic constitutive behaviors are correctly captured by
our method despite the extreme compressions.

twisting and compression. The buddha returns to rest state
quickly after the prescribed deformation is removed. In
Figure 2 we reproduce the scenario where an armadillo is hit
with a ball [SHST12] and demonstrate that we can achieve
similar results using MPM. Egea model in Figure 4 falls
under the influence of gravity and is compressed severely
in the process by a shrinking tunnel. The egea model
correctly recovers after several bounces on the floor. With
the example presented in Figure 5, we show that our method
can handle completely flat configuration. Figure 6 explains
this dynamical process by visualizing the percentage of
enriched particles as a time-varying function. In Figure 7 we
force a kitty to pass through a thin funnel and our method
is capable of robustly handling the inversion therein. The
bunny in Figure 8 is rolled over by a cylinder, and deforms
with complex compression and stretching. In Figure 9 we
present an example where a rabbit is sucked out of a cup
through a straw. There is massive inversion while the rabbit
is in the straw, and our method can handle the degeneration
robustly. An illustration of the dynamical enrichment for all
these examples is shown in Figure 10. We can see that the
enrichment is enabled only if severe inaccuracy is detected.

Finally we demonstrate that our enriched MPM could still
handle the kind of material behaviors that makes standard
MPM attractive in the first place. In Figure 11 the initially
elastic bunny melts into viscous phase after being heated.
This is achieved by disabling the particle domains of the
particles influenced by the heat source during simulation
to allow topological changes between particles. We update

Figure 8: Bunny is rolled over by a cylinder. Our
method prevents numerical fracture in the stretching and
robustly handles the degenerated deformations caused by the
cylinder.

the temperature and constitutive model parameters with
a simplified implementation of Stomakhin et al.’s work
[SSJ∗14] without enforcing incompressibility. The surface
mesh for rendering here is reconstructed from particles using
the method by Bhatacharya et al. [BGB11]. In Figure 12 the
armadillo is attacked from behind by a snow ball. The snow
ball shatters and hits against the wall, while the armadillo
deforms elastically. The different phenomena presented here
are simulated with the unified MPM framework, and the
coupling is handled trivially by the background grid. We
use the elasto-plastic constitutive model [SSC∗13] for the
snow ball, and it is set artificially heavy to keep the armadillo
“bowing”.

Table 1 lists the simulation times and resolutions for each
of the examples. Our implementation is sequential and no
particular code optimization is employed. For all of the
examples the grid cell size is h = 0.5m and the time step
size is generally 4t ' 2.5× 10−4s. A less restrictive time
step size 4t ' 5.0× 10−4s is used for the melting bunny
example because the deformation therein is moderate. The
compressible Neo-Hookean model with Young’s modulus
E ' 5.0× 106Pa and Poisson ratio ν = 0.3 is employed for
examples that demonstrate hyperelasticity.
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Figure 9: Rabbit is sucked out of the cup through a straw. The massive inversion and accumulated errors are well handled by
our method.

Example Particles Grid min/frame Error
Buddha 2918 32×40×32 6.34 2.4e-4

Armadillo 3134 30×16×13 6.15 2.5e-3
Egea 4269 24×64×24 14.94 2.3e-5

Gorilla 4649 32×80×32 8.42 5.4e-3
Kitty 5226 96×88×96 13.85 3.7e-3

Bunny 3559 56×16×16 12.38 1.2e-3
Rabbit 2635 24×104×24 7.15 1.8e-4

Melting bunny 60000 24×22×24 15.10 N/A
Armadillo snow ball 16587 120×72×52 15.17 N/A

Table 1: Particle counts, grid resolutions, simulation times,
and average particle deviations for each of our examples.
The timings are measured at graphics frame rate of 30
frame/s. Simulations are performed on a single core of Intel
Core i5, 2.8GHz.

In order to quantitatively evaluate the efficacy of our
method in reducing accumulated error, we compare the par-
ticle positions at the rest state before and after deformations.
The position deviations are measured over the diagonal of

the object’s bounding box: Error =
|xp−xre f

p |
d where d is

the length of the diagonal. For unconstrained motions, we
first align xp and x

re f
p to eliminate the rigid motions using

the shape matching technique [MHTG05]. As depicted in
the table, we have reduced the effect of error to a negligible
magnitude.

8. Discussion and Conclusion

Comparison to FEM. MPM could be conceived as an
extension of FEM, in which the computational mesh is fixed

Figure 10: Illustration of dynamical enrichment with the
percentage of enriched particles for the examples presented
in the paper.

in space. The enriched particle domains are Lagrangian
degrees of freedom that we use to alleviate accumulated
error of standard MPM. It might seems contradictory to
carry Lagrangian particle domains with MPM for hypere-
lasticity since FEM can easily handle such problems. We
assert, however, that we switch to particle domains for
additional degrees of freedom only when necessary and most
of the computation is still performed on the static grid. The
use of the static grid allows us to take advantage of the
automatic grid-based collision handling of MPM. Besides,
our modification to MPM doesn’t harm the original strength
of MPM because we can easily disable the particle domains
during simulation if topological changes are required. It
is a well-known fact that it is not trivial for FEM to
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Figure 11: Bunny bounces elastically before the bottom of
the container is heated (top), and melts into viscous phase
after heating(bottom).

handle topological changes. Our approach combines the best
aspects of both MPM and Lagrangian FEM, such that it can
handle elasticity as good as FEM and at the same time retain
the advantage of MPM in simulating other varied materials.
In this way, multiphysics simulations can be addressed in a
unified manner without the complexity of coupling between
multiple methods.

Performance. Our enhancements to MPM come with some
computational cost. First, the evaluation of interpolating
functions is more expensive. Interpolating functions between
particle domain corners and grid must be computed, as well
as those between particles and grid. However, we believe
this additional cost can be alleviated with parallelization as
previous research has shown good scaling performance of
MPM. In the future, we might consider acceleration of our
method via GPGPU techniques to improve the performance.
Alternatively, employing model reduction techniques [BJ05,
TLP06] for MPM to reduce run times is also an interesting
avenue of future work. Another source of additional cost
comes from our enrichment strategy, where more compu-
tational nodes are employed. Figure 13 shows the relation
between enrichment and the performance of our method
with the armadillo example (Figure 2). The running time
rises from 50 seconds/frame to 195 seconds/frame when the
percentage of enriched particles is increased to 80% from
none. Fortunately, the percentage of enrichment changes
dynamically during simulation and remains at low values
(below 10%) most of the time. Considering the benefits of
the enrichment, we believe this cost is acceptable.

Limitations. Although we handle pure elasticity well with
our dynamical enrichment, there is no warranty that the
accumulated error is completely eliminated because we use
a binary metric for enrichment. Increasing the enrichment
threshold removes more error, but with the cost of more com-
putation. Nevertheless, we did not encounter undesirable
inaccuracy with the threshold used in our experiments (see
Table 1 for the error evaluation). Another minor limitation

Figure 12: Armadillo hit by a snow ball. The snow ball
shatters while the armadillo deforms elastically.

Figure 13: The running time per-frame (blue) and the
percentage of enriched particles (red) for the armadillo
example. The simulation time changes in accordance with
the amount of enrichment and remains at acceptable low
values.

of our method is that we did not handle self-collisions. The
background grid handles collision well in most cases, but it
can not fully resolve the penetrations due to the extremely
wild deformations presented in our examples. Since it is not
the focus of this paper, we leave it as future work.

Conclusion. In summary, we have introduced a novel
enhancement of material point method for invertible
elasticity using dynamical enrichment. The enriched
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MPM is capable of robustly simulating extreme elastic
deformations with degenerated configurations. Therefore,
we have broadened the already wide range of materials
that MPM can handle, and promoted the use of MPM as a
unified solver.
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