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Abstract

We present a novel method for flexible and efficient simulation of example-based elastic deformation. The geometry
of all input shapes is projected into a common shape space spanned by the Laplace-Beltrami eigenfunctions. The
eigenfunctions are coupled to be compatible across shapes. Shape representation in the common shape space is
scale-invariant and topology-independent. The limitation of previous example-based approaches is circumvented
that all examples must have identical topology with the simulated object. Additionally, our method allows examples
that are arbitrary in size, similar but not identical in shape with the object. We interpolate the examples via a
weighted-energy minimization to find the target configuration that guides the object to desired deformation. Large
deformation between examples is handled by a physically plausible energy metric. This optimization is efficient
as the eigenfunctions are precomputed and the problem dimension is small. We demonstrate the benefits of our
approach with animation results and performance analysis.
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Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Animation

1. Introduction

The simulation of deformable materials is an essential re-
search topic in physics based animation because deformable
objects are prevailing in animated movies, computer games
and virtual reality systems. Thanks to the research progress
that has been made, the deformation behavior of many ma-
terials can be accurately reproduced with simulation. How-
ever, achieving desired deformation behavior through tuning
material parameters remains a challenging and tedious work.

Recently, Martin et al. [MTGG11] proposed an approach
that simply uses given example poses to achieve art-directed
animation of deformable materials. They employ Cauchy-
Green strain as the deformation measure and construct an
elastic energy that pulls current configuration toward the pre-
ferred configuration defined by examples. Their method of-
fers an intuitive way to design materials with desired de-
formation behavior in simulation at the cost of substantial
computation. It involves solving an expensive nonlinear op-
timization problem to reconstruct a consistent geometric rep-
resentation of interpolated example poses. In addition, the
input examples are constrained to share the same topology
with the object. In their later work [STC*12], they used an
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incompatible representation for the input and interpolated
poses. It allows linear interpolation between elements indi-
vidually and bypasses the costly reconstruction process. Per-
formance of the method was improved, while the limitation
with respect to topology remains unresolved.

Our work circumvents these limitations simultaneously,
and offers additional benefits. We express shapes in a com-
mon shape space whose basis are the coupled Laplace-
Beltrami eigenfunctions. In this shape space different mod-
els can be animated using the same examples (Figure 1).
Computation efficiency is improved as the shape space is a
reduced subspace. The contributions of our work are:

e We novelly employ the Laplace-Beltrami eigen-analysis
in physics based animation for convenient creation of art-
directed deformation behaviors.

e The choice of examples is more flexible than previous
methods. Examples are scale and topology independent,
and can be nonidentical shapes.

e Our method is efficient because the eigenfunctions are
precomputed and the most expensive run-time cost is a
least square optimization in the reduced shape space.

In Section 2 we review recent work that is most related to
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Figure 1: A gorilla and an armadillo fall to the slippy ground with analogous reactions following common example shapes.
The examples are represented by meshes different from both the gorilla and the armadillo.

ours. Then we introduce necessary theoretical background
on example-based elastic simulation and Laplace-Beltrami
framework in Section 3. An overview of our method is pre-
sented in Section 4, and the details are described in Section 5
through 7. Results are demonstrated with performance anal-
ysis in Section 8. Finally, we conclude the paper in Section
9 with discussions.

2. Related Work

Since the pioneering work of Terzopoulos et al. [TPBF87],
tremendous progress has been made in accuracy, speed and
robustness of the methods to simulate deformable materi-
als. A detailed discussion on the state of the art is beyond
this paper, and we suggest the survey paper of Nealen et
al. [NMK*06] and its references. In the rest of this sec-
tion, we will focus on research work most related to ours on
deformable simulation control, the Laplace-Beltrami eigen-
analysis, and shape interpolation.

Controlling the simulation of deformable materials is
essential because it is necessary in many applications. For
example, an animator often wants an object to deform in
a way that he desires. While realistic deformation can be
achieved with physics based simulation, controlling the de-
formation behavior through manual parameter tuning is dif-
ficult if not impossible. Many methods have been proposed
seeking other forms of control that are more intuitive. One
prevailing kind of approaches are the space-time constraint
methods. These methods control the motion of objects via
minimization of an objective defined through a set of key
frames. It was first proposed by Witkin et al. in [WK88] and
improved thereafter [BPOS, BASP09, HSvTP12].

The example-based materials by Martin et al. [MTGG11]
allow the deformation to be controlled directly by a set of
example poses. Their method fits in well with the work-flow
of artists. In their follow-up work [STC*12], they improved
the computational efficiency and introduced the example-
based plasticity model. Koyama et al. achieved real-time

example-based elastic deformation from a geometric per-
spective [KTUI12]. They incorporate meshless shape match-
ing framework and linear interpolation of the example poses.
Song et al. [SZW™14] applied example-driven deformation
in a corotational finite element framework for the purpose of
fast simulation. An error-correction algorithm was proposed
to address the possible errors with corotated linear strain.

The eigenvalues and eigenfunctions of the Laplace-
Beltrami operator contain intrinsic shape information and
receive intensive attention in shape analysis. Reuter et al.
[RWPOS5, RWP06] proposed to use the set of Laplace-
Beltrami eigenvalues as a fingerprint of the shapes and they
named it the ‘Shape-DNA’. They presented many properties
of the eigenvalues and described the numerical computation
using linear/cubic FEM. As proposed in [Lev06], the poten-
tial applications of the Laplace-Beltrami eigenfunctions are
wide: signal processing on surfaces, geometry processing,
pose transfer, etc. Rustamov and colleagues [Rus07] pre-
sented the GPS embedding as a deformation invariant rep-
resentation of non-rigid shapes, which they used for the pur-
pose of shape classification. [Reul0] introduced a method
to hierarchically segment articulated shapes into meaningful
parts and to register the parts across near-isometric shapes.
It exploits the isometry invariance of the Laplace-Beltrami
eigenfunctions and uses the topological features for segmen-
tation. In [OBCS*12] the authors proposed a novel represen-
tation of correspondences between shapes as linear maps be-
tween functional spaces on manifolds. The Laplace-Beltrami
eigenfunctions are a good choice of basis for the functional
spaces. [KBB*13] proposed an algorithm to align the eigen-
functions of multiple shapes, taking as input a set of cor-
responding functions such as indicator functions of stable
regions on the shapes. It benefits the applications of the
Laplace-Betrami eigenfunctions because the shapes are no
longer restricted to be isometric/near-isometric.

Shape interpolation is an important issue in geometry

processing. Numerous approaches have been proposed to
avoid the artifacts of linear interpolation. One effective re-
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search trend is based on maintaining the rigid criteria of
local geometrical elements or so-called as-rigid-as possible
principle [ACOLO00,IMHO05,SA07]. These methods compute
preferred interpolations by interpolating local affine trans-
formations of the local geometrical elements. [XZWBO05]
proposed a nonlinear gradient field interpolation method,
which takes both vertex coordinates and surface orientation
into account. They formulate the problem of interpolation as
solving Poisson equations defined on a domain mesh. The
MeshIK method [SZGPO5] extracts per-face deformation
gradients, which are interpolated between examples. The in-
terpolated mesh is reconstructed from the deformation gra-
dients through a least square optimization. [LSLCOO05] in-
troduced a rigid motion invariant mesh representation based
on discrete forms defined on the mesh, and linear interpola-
tion between the representations yields natural intermediate
shapes. Winkler et al. [WDAH10] interpolate shapes repre-
sented by meshes in terms of edge lengths and dihedral an-
gles. They employ a rather complicated hierarchical shape
matching technique to find the mesh that best matches the in-
terpolated edge lengths and angles. [FB11] also interpolated
meshes in terms of edge lengths and dihedral angles, but de-
rived a simpler method for computing the best matched mesh
based on an elastic deformation energy of discrete shells.

3. Theoretical Background

In this section, we present an overview of the basic example-
based elastic simulation framework, the Laplace-Beltrami
operator and its eigen spectrum. Thorough descriptions of
these concepts can be found in [MTGG11] and [RWPO06,
Lev06,Rus07,Reul0] respectively.

3.1. Example-based Elastic Materials

The key idea of example-based elastic materials is to add
an additional elastic potential to a basic simulator of elastic
solids. The additional potential attracts the object to imitate
the input examples. The equations of motion of an object
discretized in space are given by

ow; W,

ox +87X:fext~ (1)

Here x and X are the positions and accelerations of the
object’s nodal degrees of freedom, M is the mass matrix,
W; = W(X,x) represents the internal potential energy be-
tween the object’s deformed configuration x and rest con-
figuration X, W = W (Xiarger, X) represents the potential en-
ergy between the object’s deformed configuration x and its
closest target configuration Xy4rger on the example manifold
spanned by input examples, fexs denotes the sum of external
forces due to gravity, friction and contacts.

MX +

The example manifold is a subspace of desired deforma-
tion constructed by proper interpolation of the input exam-
ples. In [MTGG11] it is constructed by linear interpolation
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of the elements’ Green strains followed by a nonlinear op-
timization to reconstruct a consistent configuration. In con-
trast, we construct the example manifold by minimizing the
sum of weighted deformation energies to all the examples.

3.2. Laplace-Beltrami Framework

The Laplace-Beltrami operator A (LBO) of any twice differ-
entiable real-valued function on compact Riemannian mani-
folds can be defined as

Af :=div(gradf), 2

grad and div are respectively gradient and divergence oper-
ators defined with respect to the Riemannian metric [Pet06].
The Laplace operator can be seen as the special case of the
LBO with a Euclidean metric.

The spectrum of the LBO consists of eigenfunctions f;
each with a corresponding eigenvalue A;, which are defined
as the solution to the following equation:

Af =M. 3

The eigenvalues are non-negative and constitute a se-
quence of real valued numbers in ascending order:

<A< <ML

If the manifold is closed or the Neumann boundary condi-
tion is satisfied, the first eigenvalue Ay will be zero and its
eigenfunction fj becomes a constant function. The spectrum
is named simple spectrum if multiplicity of all eigenvalues
equal to one.

The eigenfunctions form an orthonormal basis for the
space of functions defined on the manifold. The orthonor-
mality is understood in the sense of the inner product on the
manifold, which is defined as:

<fig>= /S Feds. @)

‘We name the inner product s-inner product. Thus, normal-
ization of the eigenfunctions requires < f;, fi >= 1.

In addition, the eigenfunctions and eigenvalues of the
LBO have the following properties:

1. Isometric shapes with simple spectrum have identical
eigenfunctions up to sign. Isometric shapes with eigen-
value multiplicity greater than one have eigenfunctions
up to rotation in the corresponding subspace.

2. Similar shapes have analogous eigenvalues and eigen-
functions.

3. Scaling an n-dimensional manifold by the factor a will
scale the eigenvalues by 1 /a2, and the s-normalized
eigenfunctions by 1/a.

Taking advantage of these properties, we are able to obtain
more flexible choices of examples and better performance
than previous example-based methods.
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4. Method Overview

The basic idea behind our method is the construction of a
common shape space that is scale-invariant and topology-
independent. The input examples form an example manifold
in this shape space, which represents the desired deforma-
tion. Through an efficient least square optimization we find
one target configuration that attracts the simulated object to
the input examples.

Our method proceeds in two stages: the precomputation
stage and the run-time simulation stage. Here we outline the
procedures in each stage:

e Precomputation:

1. Compute m leading eigenfunctions/eigenvalues for the
shapes and normalize the eigenfunctions (section 5.1).

2. Register the examples’ eigenfunctions with the ob-
ject’s eigenfunctions (section 5.1).

3. Project the geometry of all examples onto their eigen-
functions and get corresponding coefficients as the
shape descriptors (section 5.2).

¢ Run-time:

1. Find the target configuration with respect to the ex-
amples and object’s current configuration in the shape
space (section 6).

2. Reconstruct the displacement between target configu-
ration and the object in Euclidean space, and compute
the example control energy (section 5.3).

3. Add the effects due to conventional deformation and
external force, step the simulation.

Our method imposes no restriction on the basic elastic
simulator. It can be plugged into any popular elasticity mod-
els [BW97] and time stepping techniques [MSJTO8]. We use
the Vega FEM library [BSS12] as the simulation framework.

All input examples are triangle surface meshes in our im-
plementation, whereas it is not a restriction of the method,
any other representations such as volumetric meshes used
in [MTGG11, STC*12] works. The eigenfunction f of a
manifold represented as a mesh with n vertices {1, ...,xn}
is a vector f = (f(a1),..., f(zx))T. Coordinate functions
(vx, vy, v;) defined at mesh vertices can be used to describe
the shape geometry, where vy = (Vaz(@1), ..., viz ()T
In this discrete setting, the s-inner product in eq(4) is

< f7g >= Zf(mi)g(mi)s(mi)v (5)
i=1

where s(x;) is the surface area corresponding to x;, and the
sum of s(x;) equals the area of the surface mesh.

5. Spectral Projection and Reconstruction

In our method, shapes embedded in Euclidean space are pro-
jected into shape space spanned by the Laplace-Beltrami

Reference

Figure 2: The eigenfunctions of a deformed armadillo are
registered with respect to the eigenfunctions of a gorilla. Af-
ter the registration, the eigenfunctions between the shapes
are consistent. Hot and cold colors represent positive and
negative values, respectively.

eigenfunctions. The displacement between the target config-
uration and the object is reconstructed in Euclidean space for
the computation of example control energy.

5.1. Computation and Registration of Eigenfunctions

There exists several ways of approximating the Laplace-
Beltrami operator and its eigenfunctions on discrete repre-
sentations of manifolds (see [RBG*09] for a comparison).
We choose the linear/cubic FEM approximation [RWP06,
ReulO] because of its high accuracy. The first constant
eigenfunction is excluded from the computed eigenfunctions
since it encodes only rotation and rigid translation.

The eigenfunctions of different shapes need to be aligned
before they can be used as the common (approximate) ba-
sis. For multiple isometric/near-isometric shapes with sim-
ple spectrum, the eigenfunctions are consistent up to sign
which can be aligned with simple sign-flipping operations.
However this is not guaranteed for general shapes. In the
case of non trivial eigenvalue multiplicity, the alignment of
eigenfunctions involves rotation. Besides, the order of the
eigenfunctions across shapes is not consistent due to numer-
ical instabilities. The eigenfunctions may vary significantly
if the shapes deviate beyond certain degree. We employ the
method in [KBB*13] to couple the eigenfunctions. Given
a set of corresponding information between the shapes, the
algorithm rotates and reflects the eigenfunctions such that
they’re best aligned in the least squares sense. We input the
correspondence of some regions on the shapes and register
the eigenfunctions of all examples according to the object’s
eigenfunctions (Figure 2). The corresponding regions can be
easily acquired using the algorithm described in [LBB11] or
manual marking. The registration is convenient and needs to
be conducted only once, because the adjusted eigenfunctions
can be saved to disk for later simulation.
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Figure 3: Overview of run-time operations. Three poses of

the elastic cuboid are given as examples here, each with dif-
ferent number of vertices. The examples, as well as the ob-
Ject are projected onto their first m Laplace-Beltrami eigen-
functions. Each projected shape is represented as an m-
dimensional point. The target configuration (red point) is
minimizer of weighted energies to all the examples.

5.2. Projection onto Eigenfunctions

We project the examples and the object onto their Laplace-
Beltrami eigenfunctions. The projection is done through s-
inner product of shape’s geometry and its Laplace-Beltrami
eigenfunctions. We know that if an n-dimensional manifold
is scaled by the factor a , area of the manifold will be scaled
by a?, the eigenvalues by 1/ a?, and the s-normalized eigen-
functions by 1/a. Thus, we scale each eigenfunction f; with
A; so that size information is removed from the inner-product
of shape geometry with the eigenfunctions. The set of eigen-
functions used for the projection are:

{}\’lfl7>“2.f23"'7}\’mfm}'

The shape geometry is represented as coordinate func-
tions of mesh vertices v(vx, vy, v;). Hence projection of the
shape geometry can be computed as:

(<o, AMifi > <vy, Mifi > <oz, Mifi >)(1<i<m).

It results in an m X 3 matrix with columns corresponding to
the projection of the three coordinate components. The ma-
trix can also be considered as a generalized m-dimensional
vector in the m— dimensional shape space (Figure 3).

5.3. Reconstruction from Eigenfunctions

For every point in the Laplace-Beltrami shape space, we can
reconstruct its representation in Euclidean space with the
eigenfunctions. The size information is embedded back by
scaling the eigenfunctions in correspondence to the projec-
tion process (section 5.2). The eigenfunctions used for the
reconstruction are:

1 1 1
{flfhfsza"wEfm}'
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We compute the displacement between the target con-
figuration and object’s current configuration in the m-
dimensional shape space. Suppose it is d(d',d*,...,d"),
then the displacement in Euclidean space is reconstructed
using the eigenfunctions of the object as Y;" | d’% fi

The reconstructed displacement is defined on the surface
as we represent shapes with surface meshes. We then dis-
tribute displacements of the surface vertices to vertices of
the object’s volumetric mesh using a compact-supported de-
creasing kernel. In our implementation, we use a linear ker-
nel. A volumetric mesh vertex may be in the kernel range of
several surface vertices. Contributions from all these surface
vertices are averaged. Note that this "displacement distribu-
tion" operation can be bypassed if volumetric meshes are
used for eigenfunction computation.

From the displacements of the volumetric mesh vertices,
we construct an elastic energy that pulls the object to the tar-
get configuration. Any elasticity model can be used to com-
pute the energy, and a simple linear elastic model suffices in
our experiments. The material stiffness is scaled by a scaling
factor o to addjust the strength of examples.

6. Interpolation of Examples

Suppose that we are given k examples, represented as m-
dimensional points e; (1 <i < k) in the shape space spanned
by the eigenfunctions. We interpolate the examples to get
one target configuration that guides the deformation of the
object. Linear interpolation leads to artifacts when the de-
formation between the examples is severe (Figure 4, top).
We incorporate an efficient weighted-energy interpolation
approach, so that intermediate configurations between the
examples are naturally deformed (Figure 4, bottom).

The target configuration ¢ is defined as the one that min-
imizes the sum of weighted deformation energies to all the
examples (Figure 3):

k
mtmi:Z:lwiE(t,ei), 6)

where E(-,-) is some nonlinear deformation energy be-
tween two shapes, w; (1 < i < k) measures the guiding
strength of the examples and ):f-‘zl wi=1.

We dynamically determine the guiding strength of each
example according to its closeness with the object’s config-
uration c¢ in each time step:

I P 2
n}vlin §||l;w,e,—c|\p
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Figure 4: Comparison of linear interpolation (top) and our
approach (bottom) between two severely deformed shapes
(vellow). The interpolated shapes (cyan) are shown for in-
terpolation weights of wi = 0.25,w; = 0.5,w; =0.75.

where ||-||F is the Frobenius norm.

Eq(6) and eq(7) can be formulated as a single optimiza-
tion problem by enforcing eq(7) as constraints of eq(6):

min ) wE te
tw,g '
S.t.

k

(Y wiei—c)-ej=0, j=1...k ®

[RW09, CPSS10] employed similar weighted-energy in-
terpolation strategy to get intermediate shapes between given
shapes. Their approaches only apply to shapes that have
identical topology and the unknowns are the vertex posi-
tions, whereas we represent shapes of different topologies in
the common Laplace-Beltrami shape space and the number
of unknowns is reduced to the number of eigenfunctions.

E(-,-) can be arbitrary nonlinear deformation energy be-
tween two shapes that is physically plausible. We choose the
energy in [FB11] since all the shapes are represented as sur-
face meshes in our implementation. The energy is composed
of three terms: stretching term Eg, bending term E;, and vol-
ume preservation term E,. They each measures the squared
deviations of edge lengths, dihedral angles, and the volume
enclosed by the shapes. All the three terms can be repre-
sented by vertex positions of the meshes, and in turn by the
coefficient vectors in the Laplace-Beltrami shape space. For
shape e that does not have compatible topology with the ob-
ject, we can reconstruct a compatible representation with the
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object’s eigenfunctions:

m

T = Trest + Z(ei - Ci’est)
i=1

1
xifi- &)

Trest 1S Vertex positions of the object’s initial configura-
tion, cyresr 1s the corresponding coefficient vector. Therefore
energy between e and c can be represented by their corre-
sponding coefficient vectors.

The optimization objective is quadratic with respect to the
coefficient vector when E(-,-) is the deformation energy in
[FB11]. It leads to a simple linear system to solve. The num-
ber of unknowns is 3 *m+ k, which is small compared to the
number of vertices. We use the Conjugate Gradient solver in
ALGLIB (http://www.alglib.net/) to solve this prob-
lem. Current configuration c is used as the initial guess, and
the solver typically converges in less than 10 iterations.

7. Extension to Local Examples

We have thus far assumed that deformation of the exam-
ples influences the object globally. However, extension of
our method to employing local examples that only influence
local regions of the object is straightforward. We partition
the entire domain of the object into separate regions, each
influenced by corresponding region on examples indepen-
dently. The corresponding regions on different shapes need
not to have identical resolution. For each local region on the
object, we project only the part of geometry that is in this
region onto the entire object’s Laplace-Beltrami eigenfunc-
tions. This is achieved by setting entries corresponding to
vertices outside the region in the vector representing shape
geometry to zero. The example manifold for this region is
constructed by projecting the region’s counterparts on the
example poses onto corresponding eigenfunctions. After re-
constructing the displacement vector between current con-
figuration and target configuration for each region (section
5.3), we extract entries of vertices in the region and proceed
with rest steps of the method. Each local region is handled
independently, thus our method allows for different local ex-
amples combined together to yield complex behaviors.

To resolve fine-scale deformation of local regions, a
slight modification is incorporated. We precompute Laplace-
Beltrami eigenfunctions for each local region and project the
region’s geometry onto the local-support eigenfunctions in-
stead of onto eigenfunctions of the entire shape as mentioned
before. Similar multi-domain strategy has been exploited
in [KJ11,BZ11] to capture local deformation details without
compensating the benefits of reduced simulation. Different
from their method, our multi-domain strategy is used only to
compute guiding effect exerted by the examples and the sim-
ulation is still conducted on the entire domain. Thus there’s
no need to handle inter-domain cracking artifacts. Figure 5
is one example illustrating the effect of this strategy.
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Figure 5: Eigenfunctions of the three local regions on the
cross shape are computed respectively (left). Compression
on the two horizonal regions (middle) followed by compres-
sion on the vertical region (right) leads to different fine-scale
deformation styles on each region.

8. Results

In this section, we demonstrate that we can create results
visually very similar to previous approaches, but with more
flexible choices of examples. We also conduct performance
comparison and scaling analysis to show the efficiency of
our method.

Figure 6 shows a simple example of an elastic bar de-
forming under gravity. We believe we have successfully re-
produced the deformation behavior presented by Martin et
al. [MTGG11]. It’s worth noting that meshes with different
resolutions are used to compute the eigenfunctions for the
object and the examples.

As demonstrated in the accompanying video, our method
allows guiding the simulation of an elastic cuboid bar with
cylindroid bars. The deformation behaviors produced using
cylindroid bar examples are similar to those in Figure 6. This
further illustrates the flexibility of our approach in choosing
examples compared with previous approaches.

Figure 7 is one more example that demonstrates this flex-
ibility of our method. The legs of the round stool deform
exactly like the square stools provided as examples.

As seen in Figure 8, a gummy bear equipped with expres-
sive examples can perform peculiar reactions to user inter-
actions. Figure 9 depicts the effect of local examples on the

Figure 6: An elastic bar deforms under gravity using no ex-
ample, a twisted example and an S-shaped example respec-
tively.
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Figure 7: A round stool bends its legs while compressed by
a steel sphere (bottom). Square stools are provided as exam-
ples (top).

Figure 8: A gummy bear puts up both its arms (left) and
bends down its head (right) in response to different user in-
teractions. The red lines depict the user interactions.

teddy bear to generate more interesting deformation behav-
iors. The left and right sides of the teddy bear can be manip-
ulated independently because each side is influenced only by
corresponding local region from the example pose.

We emulate a toy sports car hitting the wall following dif-
ferent examples in Figure 10. As the shape of a car can be
described by its body, we employ meshes of the car body for
eigenfunction computation and example design.

The examples to guide the plane model in Figure 11 vary
from the plane itself to a bird, and even a fish. Different ex-
amples are activated during the process of the plane’s move
using the position of the plane’s center as a trigger. The plane
flaps its wings like a bird while taking off, bends the body
to turn the direction following a fish example, and rotates
through a torus with an impressive pose.

In Figure 12, we design various deformation behaviors for
the letter-shaped soft bodies and make them react to impacts
following the augmented deformation styles. The "E", "2"
and "1" are crushed by another object with their bottom parts
fixed on the ground, while the other letters fall and hit the
ground under gravity. The deformation depicted in this fig-
ure, for example "G" swinging its upper body and "0" twist-
ing, can not be easily produced merely by physics. With our
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(a)

Figure 9: The teddy bear () is divided into two separate
regions, each guided by corresponding region from one ex-
ample pose (b). The teddy bear’s left and right parts deform
independently in response to user interactions (c).

Figure 10: A sports car hits the wall and reacts in diverse
ways with no example (upper left), an arc-shaped example
(upper right), a wave-shaped example (lower left), and a
twisted example (lower right).

example-based approach, we can efficiently create these car-
toon style behaviors.

Performance Timing information for all results presented
in this paper is summarized in Table 1. The simulations are
run on a single core of an Intel Core i5, 2.8GHz, with no
particular code optimization. Time step size is uniformly set
to 0.005s for all simulations. As can be seen in the table,
the run-time cost is dominated by the interpolation of ex-
amples to find the target configuration. Due to the decou-
pling of physical simulation and shape interpolation in the
Laplace-Beltrami shape space, the cost of shape interpola-
tion is constant with respect to the simulation degrees of
freedom (DOFs). It only depends on the number of eigen-
functions, number of examples, and resolution of the mesh to
compute the object’s eigenfunctions. Therefore we can sim-
ulate with much more DOFs than Martin et al’s approach
[MTGG11] and still manages to lead in efficiency. Their
method typically takes seconds for simulation with the num-
ber of DOFs around 1000. In contrast we can achieve sev-
eral frames per second with times more DOFs than theirs.
Estimating the time for synthesizing one second of simu-
lated motions from the timings in the table and the size of

Figure 11: A toy plane performs a series of artistic moves
(bottom) following different example shapes (top).

time step, we find that our method is roughly as efficient
as Schumacher et al’s method [STC*12] at the same scale
of simulation complexity and even faster in some cases. The
“Cuboid Twisting” for instance, our approach costs 55.5 mil-
liseconds, Martin et al’s needs 528~3064 milliseconds, and
Schumacher et al’s claims to be 14.8 times faster than Mar-
tin et al’s which is approximately 35.7~207 milliseconds.
The number of DOFs is approximately identical for the three
methods.

Model #DOFs | #V(obj) | #Eigen | tinerp tior
Gorilla 4659 2225 5 227.3 | 247.6
Armadillo 7814 3170 5 3574 | 396.5
Bar (cuboid ex.) 981 682 14 51.2 55.5
Bar (cylindroid ex.) 981 5811 15 266.8 | 271.6
Stool 1608 11447 3 111.7 | 1214
Teddy arms up 2571 11273 6 86.7 | 105.2
Teddy head down 1773 11273 6 70.3 83.5
Teddy local ex. 1773 11273 6 302.8 | 313.7
Cross 4683 682 14 564.1 | 592.4
Car 2181 9441 4 207.7 | 221.6
Plane 7701 4728 5 340.6 | 4249
E 6501 4199 4 186.9 | 232.7
G 3129 5633 4 335.0 | 351.5
2 2364 4467 4 318.6 | 3283
0 2445 4430 4 301.7 | 3144
1 2421 2995 4 177.8 | 189.9
4 4887 3365 4 2729 | 303.6

Table 1: Summary of all results presented in the paper. The
columns indicate the number of DOFs, vertex number of the
mesh to compute the object’s eigenfunctions, the number of
eigenfunctions, average time (in milliseconds) for example
interpolation, and total time for one simulation step.

We also measure the timings of the "Cuboid Twist" an-
imation using different number of examples for a quanti-
tative comparison with [MTGG11]. The results in Table 2
indicate that the time spent on solving for the target config-
uration scales linearly with the number of examples. This
is reasonable as our weighted-energy optimization evaluates
deformation energy from the target configuration to every
example. Comparing the timings with those in table 2 of
[MTGG11], we can see that our method outperforms theirs
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Figure 12: Letter-shaped soft bodies perform designed deformation behaviors in response to different impact events.

for all the listed number of examples. This is due to the
fact that the dimension of our optimization problem is much
smaller. Generally less than 10 examples would suffice for
the creation of impressive animations and introducing too
many examples can create ambiguities about the desired de-
formation. Thus our method is evidently more efficient for
practical use despite that they achieve better scaling than
ours.

#ex. lex. 2ex. 3ex. 4ex. 8ex. 12ex.
t(ms) 8.5 159 232 305 5938 85.1

Table 2: Performance scaling (in milliseconds) for multiple
examples (top row) illustrated in the "Cuboid Twist" anima-
tion for one single iteration.

Table 3 lists timing information of the same animation us-
ing meshes with different resolutions to compute eigenfunc-
tions of the simulated object. The cost increases with the
complexity of the mesh because evaluation of the objective
function at each optimization iteration involves the number
of edges and faces (section 6). The performance scaling is
acceptable and the mesh needs not to be very dense in prac-
tice. We manage to achieve beneficial efficiency by restrict-
ing the maximum complexity of the meshes to about 10000
vertices.

#vert | 1000 2000 4000 6000 8000 10000
t(ms) | 212 454 1126 1551 2135 2970

Table 3: Performance scaling (in milliseconds) for different
resolutions of the mesh for eigenfunction computation (top
row) illustrated in the "Cuboid Twist" animation for one sin-
gle iteration.

9. Discussion and Conclusion

Number of eigenfunctions. The sequence of Laplace-
Beltrami eigenfunctions corresponding to ascending eigen-
values describe the shapes’ features from coarse to fine scale
(Figure 13). Using the truncated set of leading eigenfunc-
tions as the basis of deformation space inevitably loses some
high-frequency details. However we consider this as an ac-
ceptable trade-off since the choice of examples is more flex-
ible and shape interpolation is more efficient in the reduced

submitted to COMPUTER GRAPHICS Forum (7/2014).
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Figure 13: Visualization of the first 30 Laplace-Beltrami
eigenfunctions of a cuboid bar. Eigenfunctions correspond-
ing to ascending eigenvalues capture deformation from
coarse to fine scale.

=

Figure 14: FElastic bar guided by example with coupled
twisting and bending, using different number of eigenfunc-
tions. 2 eigenfunctions (left) fail to capture the twisting,
while 14 eigenfunctions (middle) are sufficient to capture
both bending and twisting. Increasing the number of eigen-
Sfunctions to 30 generates similar result (right).

shape space. The minimum size of the set of eigenfunctions
depends on the actual shapes and the deformation of the ex-
amples. The eigenfunctions must at least be able to capture
the major deformation of the examples. Generally, a small
number of eigenfunctions are adequate. For example, in Fig-
ure 14 the coupled twisting and bending of the example can
be captured by only 14 eigenfunctions and 30 eigenfunctions
are not necessary as the results are visually identical. Fig-
ure 15 is one more example where 2 eigenfunctions only
reproduce the deformation of the arms and 3 eigenfunctions
are needed in order to fully capture the deformation of the
four limbs. Visualization of the gorilla’s eigenfunctions is
shown in Figure 2. It is in fact quite simple to choose the
proper number of eigenfunctions using the visualization of
eigenfunctions for reference. In the limit case where full set
of eigenfunctions are used, the ability of using examples of
arbitrary sizes and topology still makes our method attrac-
tive.
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Figure 15: A gorilla equipped with different number of
eigenfunctions to mimic the deformation of the example
(left). 2 eigenfunctions (middle) capture only the deforma-
tion of the arms, while 3 eigenfunctions (right) reproduce
the deformation of arms and legs.

Comparison to deformation transfer. One alternative ap-
proach that can achieve the same flexibility as ours is to first
transfer the deformation of the examples to the object using
existing deformation transfer techniques [SP04, BVGP09,
ZXTD10] and then interpolate the deformed object poses
as in [MTGGI11, STC*12] to find the target configuration.
We do not explicitly transfer deformation between meshes
in Euclidean space. Instead we find the target configuration
directly in the Laplace-Beltrami shape space. For explicit de-
formation transfer the problem dimension of finding the tar-
get configuration is the number of elements on the object.
In contrast, the problem dimension of ours is the number of
eigenfunctions which is much smaller. Thus our approach
also outperforms in computation efficiency.

Limitations. The flexibility of our method in the choice of
examples has been demonstrated with compelling results,
but much work remains to be done. Our method relies on
the eigenfunctions of input shapes to be consistent, which is
stringent for two notably different shapes even if after the
registration. For example, eigenfunctions of the plane and
fish in Figure 16 show noticeable difference although after
the registration operation. We managed to guide the bend-
ing of the plane with the fish using the first 3 eigenfunc-
tions (Figure 11), but it is impractical for deformation of
higher-frequency as the eigenfunctions start to vary signifi-
cantly from the 4¢4 column. From an animator’s perspective,
there exists some intuitive correspondence between a plane
and a fish. Thus it would be interesting to explore the intu-
itive shape correspondence that is beyond the capability of
the Laplace-Beltrami eigenfunctions.

Conclusion. We have made the simulation of example-based
materials more flexible and efficient by representing shapes
in the Laplace-Beltrami shape space. Our method extends
the range of input examples and reduces the computation
cost. It is the first example-based method to achieve the two
gains simultaneously.
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